Quantum Systems Other Than the Universe
- URL: http://arxiv.org/abs/2406.13058v1
- Date: Tue, 18 Jun 2024 21:04:45 GMT
- Title: Quantum Systems Other Than the Universe
- Authors: David Wallace,
- Abstract summary: I argue that unitary dynamics continues to have a special place in physics.
I contrast this position with the Open Systems View' advocated recently by Michael Cuffaro and Stephan Hartmann.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How should we interpret physical theories, and especially quantum theory, if we drop the assumption that we should treat it as an exact description of the whole Universe? I expound and develop the claim that physics is about the study of autonomous, but not necessarily isolated, dynamical systems, and that when applied to quantum mechanics this entails that in general we should take quantum systems as having mixed states and non-unitary dynamics. I argue that nonetheless unitary dynamics continues to have a special place in physics, via the empirically-well-supported reductionist principles that non-unitarity is to be explained by restriction to a subsystem of a larger unitary system and that microscopic physics is governed by unitary and largely known dynamics. I contrast this position with the `Open Systems View' advocated recently by Michael Cuffaro and Stephan Hartmann.
Related papers
- Open quantum systems -- A brief introduction [0.0]
This text is a short introduction to the physics of driven-dissipative many-body systems.
We will focus on one of the simplest, yet most effective, descriptions of open quantum systems, namely the (Gorini-Kossakowski-Sudarshan-) Lindblad master equation.
arXiv Detail & Related papers (2024-07-23T21:46:57Z) - To be or not to be, but where? [0.0]
Traditional approaches associate quantum systems with classical ones localized in spacetime.
canonical linearized quantum gravity disrupts this framework by preventing the formation of gauge-in-variant local algebras.
This presents a major obstacle for modeling early universe cosmology, gravity-entanglement experiments, and poses a significant roadblock toward a comprehensive theory of quantum gravity.
arXiv Detail & Related papers (2024-05-31T17:22:39Z) - Numerical investigations of the extensive entanglement Hamiltonian in quantum spin ladders [9.617349193925188]
Entanglement constitutes one of the key concepts in quantum mechanics and serves as an indispensable tool in the understanding of quantum many-body systems.
We perform extensive numerical investigations of extensive entanglement properties of coupled quantum spin chains.
arXiv Detail & Related papers (2023-11-03T04:06:20Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Exceptional entanglement phenomena: non-Hermiticity meeting
non-classicality [11.121410238719466]
Non-Hermitian (NH) extension of quantum-mechanical Hamiltonians represents one of the most significant advancements in physics.
Here, we unveil distinct exceptional entanglement phenomena, exemplified by an entanglement transition, occurring at the exceptional point of NH interacting quantum systems.
Our results lay the foundation for studies of genuinely quantum-mechanical NH physics, signified by exceptional-point-enabled entanglement behaviors.
arXiv Detail & Related papers (2022-10-10T08:48:18Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Classical Evolution Without Evolution [0.0]
I show how the same argument can be made in classical physics, by using a formalism that closely resembles the quantum one.
The key to obtaining dynamics without dynamics is the principle of energy conservation.
arXiv Detail & Related papers (2022-03-06T22:40:16Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Revisiting Quantum Mysteries [0.0]
In opposition to classical physics, it is impossible to say that an isolated quantum system "owns" a physical property.
Some properties of the system, its mass for example, belong to it in a sense close to that of classical physics.
arXiv Detail & Related papers (2021-05-30T07:34:09Z) - Understanding Quantum Mechanics (Beyond Metaphysical Dogmatism and Naive
Empiricism) [0.0]
We will argue that the reason behind the impossibility to reach a meaningful answer to this question is strictly related to the 20th Century Bohrian-positivist re-foundation of physics.
We will also argue that the possibility of understanding QM is at plain sight, given we return to the original framework of physics in which the meaning of understanding has always been clear.
arXiv Detail & Related papers (2020-09-01T14:40:44Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.