論文の概要: The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It
- arxiv url: http://arxiv.org/abs/2406.13181v1
- Date: Wed, 19 Jun 2024 03:25:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:28:56.389367
- Title: The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It
- Title(参考訳): 胸部X線自動生成における補助的患者データの影響と実施方法
- Authors: Aaron Nicolson, Shengyao Zhuang, Jason Dowling, Bevan Koopman,
- Abstract要約: 本研究は,胸部X線自動レポート生成のための多モーダル言語モデルへの多様な患者データソースの統合について検討する。
MIMIC-CXRおよびMIMIC-IV-EDデータセットを用いて, 診断精度を高めるために, バイタルサイン周期, 医薬, 臨床歴などの詳細な患者情報を組み込んだ。
- 参考スコア(独自算出の注目度): 12.61239008314719
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the integration of diverse patient data sources into multimodal language models for automated chest X-ray (CXR) report generation. Traditionally, CXR report generation relies solely on CXR images and limited radiology data, overlooking valuable information from patient health records, particularly from emergency departments. Utilising the MIMIC-CXR and MIMIC-IV-ED datasets, we incorporate detailed patient information such as aperiodic vital signs, medications, and clinical history to enhance diagnostic accuracy. We introduce a novel approach to transform these heterogeneous data sources into embeddings that prompt a multimodal language model, significantly enhancing the diagnostic accuracy of generated radiology reports. Our comprehensive evaluation demonstrates the benefits of using a broader set of patient data, underscoring the potential for enhanced diagnostic capabilities and better patient outcomes through the integration of multimodal data in CXR report generation.
- Abstract(参考訳): 本研究は,胸部X線自動レポート生成のための多モーダル言語モデルへの多様な患者データソースの統合について検討する。
伝統的に、CXRのレポート生成はCXR画像と限られた放射線学データにのみ依存しており、患者の健康記録、特に救急部門から貴重な情報を見落としている。
MIMIC-CXRおよびMIMIC-IV-EDデータセットを用いて、診断精度を高めるために、非周期的バイタルサイン、医薬品、臨床歴などの詳細な患者情報を組み込んだ。
我々は,これらの異種データソースを埋め込みに変換し,マルチモーダル言語モデルを誘導し,生成したラジオグラフィーレポートの診断精度を大幅に向上させる新しい手法を提案する。
包括的評価は、CXRレポート生成におけるマルチモーダルデータの統合を通じて、より広範な患者データを使用することの利点を実証し、診断能力の向上とより良い患者結果の可能性を裏付けるものである。
関連論文リスト
- HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis [38.13689106933105]
HIST-AIDは,過去の報告から自動診断精度を高めるフレームワークである。
AUROCは6.56%増加し、AUPRCは9.51%向上した。
論文 参考訳(メタデータ) (2024-11-16T03:20:53Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
ドメイン固有の対話型無線支援ツールD-Raxを提案する。
我々は胸部X線(CXR)画像の会話解析を強化し,放射線学的報告を支援する。
オープン・エンド・会話とクローズド・会話の双方において,反応の統計的に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-07-02T18:43:10Z) - Large Model driven Radiology Report Generation with Clinical Quality
Reinforcement Learning [16.849933628738277]
放射線学報告生成 (RRG) は, 放射線技師の作業量削減の可能性から注目されている。
本稿では,新しいRRG法である textbfLM-RRG について紹介する。
MIMIC-CXRおよびIU-Xrayデータセットを用いた実験により,本手法が技術状況よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-11T13:47:11Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。