論文の概要: Learning Translations via Matrix Completion
- arxiv url: http://arxiv.org/abs/2406.13195v1
- Date: Wed, 19 Jun 2024 04:03:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:19:11.924118
- Title: Learning Translations via Matrix Completion
- Title(参考訳): マトリックスコンプリートによる翻訳学習
- Authors: Derry Wijaya, Brendan Callahan, John Hewitt, Jie Gao, Xiao Ling, Marianna Apidianaki, Chris Callison-Burch,
- Abstract要約: 本稿では,このタスクを行列補完問題としてモデル化し,行列完了のための効果的で拡張可能なフレームワークを提案する。
この方法は多種多様なバイリンガル信号とモノリンガル信号を利用し、それぞれが不完全またはノイズである可能性がある。
- 参考スコア(独自算出の注目度): 44.785057680020245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bilingual Lexicon Induction is the task of learning word translations without bilingual parallel corpora. We model this task as a matrix completion problem, and present an effective and extendable framework for completing the matrix. This method harnesses diverse bilingual and monolingual signals, each of which may be incomplete or noisy. Our model achieves state-of-the-art performance for both high and low resource languages.
- Abstract(参考訳): バイリンガル・レキシコン・インダクションはバイリンガル・パラレル・コーパスを使わずに単語翻訳を学習するタスクである。
本稿では,このタスクを行列補完問題としてモデル化し,行列完了のための効果的で拡張可能なフレームワークを提案する。
この方法は多種多様なバイリンガル信号とモノリンガル信号を利用し、それぞれが不完全またはノイズである可能性がある。
本モデルは,高低リソース言語と高低リソース言語の両方に対して,最先端の性能を実現する。
関連論文リスト
- How Lexical is Bilingual Lexicon Induction? [1.3610643403050855]
近年の検索・ランクアプローチに語彙情報を追加することで,語彙誘導が向上すると考えられる。
提案手法の有効性を実証し,全言語対で平均2%改善した。
論文 参考訳(メタデータ) (2024-04-05T17:10:33Z) - Mitigating Data Imbalance and Representation Degeneration in
Multilingual Machine Translation [103.90963418039473]
Bi-ACLは、MNMTモデルの性能を向上させるために、ターゲット側モノリンガルデータとバイリンガル辞書のみを使用するフレームワークである。
Bi-ACLは、長い尾の言語でも、高リソースの言語でも、より効果的であることを示す。
論文 参考訳(メタデータ) (2023-05-22T07:31:08Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
論文 参考訳(メタデータ) (2021-03-18T21:17:58Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Discovering Bilingual Lexicons in Polyglot Word Embeddings [32.53342453685406]
本研究では,多言語単語の埋め込みを生成する多言語コーパスで訓練された1つのスキップグラムモデルを利用する。
本稿では, 比較的単純な近傍サンプリング手法により, バイリンガル辞書を検索できることを示す。
3つのヨーロッパ語対にまたがって、多言語単語の埋め込みは、確かに単語のリッチな意味表現を学習する。
論文 参考訳(メタデータ) (2020-08-31T03:57:50Z) - Incorporating Bilingual Dictionaries for Low Resource Semi-Supervised
Neural Machine Translation [5.958653653305609]
我々は、単語・バイ・ワードの翻訳によって合成文を生成する、広く利用可能なバイリンガル辞書を組み込んだ。
これにより、高品質なコンテンツを維持しながら、モデルの語彙を自動的に拡張する。
論文 参考訳(メタデータ) (2020-04-05T02:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。