論文の概要: Probing the Emergence of Cross-lingual Alignment during LLM Training
- arxiv url: http://arxiv.org/abs/2406.13229v1
- Date: Wed, 19 Jun 2024 05:31:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:09:15.520309
- Title: Probing the Emergence of Cross-lingual Alignment during LLM Training
- Title(参考訳): LLM訓練における言語間アライメントの創発性について
- Authors: Hetong Wang, Pasquale Minervini, Edoardo M. Ponti,
- Abstract要約: 多言語大言語モデル(LLM)は、ゼロショットの多言語間転送性能を著しく向上させる。
本研究では,LLMの事前学習において,このような言語間アライメントがどのように出現するかを検討する。
ニューロンの重なり合いと下流性能の相関関係を観察する。
- 参考スコア(独自算出の注目度): 10.053333786023089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual Large Language Models (LLMs) achieve remarkable levels of zero-shot cross-lingual transfer performance. We speculate that this is predicated on their ability to align languages without explicit supervision from parallel sentences. While representations of translationally equivalent sentences in different languages are known to be similar after convergence, however, it remains unclear how such cross-lingual alignment emerges during pre-training of LLMs. Our study leverages intrinsic probing techniques, which identify which subsets of neurons encode linguistic features, to correlate the degree of cross-lingual neuron overlap with the zero-shot cross-lingual transfer performance for a given model. In particular, we rely on checkpoints of BLOOM, a multilingual autoregressive LLM, across different training steps and model scales. We observe a high correlation between neuron overlap and downstream performance, which supports our hypothesis on the conditions leading to effective cross-lingual transfer. Interestingly, we also detect a degradation of both implicit alignment and multilingual abilities in certain phases of the pre-training process, providing new insights into the multilingual pretraining dynamics.
- Abstract(参考訳): 多言語大言語モデル(LLM)は、ゼロショットの多言語間転送性能を著しく向上させる。
これは、並列文からの明示的な監督なしに言語を調整できることを前提にしていると推測する。
異なる言語における翻訳等価文の表現は収束後に類似していることが知られているが、そのような言語間アライメントがLLMの事前学習中にどのように現れるかは定かではない。
本研究は, 言語的特徴をコードするニューロンのサブセットを同定する内在的探索手法を利用して, 言語間ニューロンの重複度を, 与えられたモデルに対するゼロショット言語間伝達性能と相関させる。
特に,多言語の自動回帰LDMであるBLOOMのチェックポイントを,さまざまなトレーニングステップやモデルスケールに頼っています。
我々は,ニューロンの重なり合いと下流性能の相関関係をよく観察し,実効的な言語間移動につながる条件の仮説を裏付ける。
また,事前学習プロセスの特定の段階における暗黙のアライメントと多言語能力の劣化を検知し,多言語事前学習のダイナミクスに関する新たな知見を提供する。
関連論文リスト
- Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models [11.423589362950812]
大規模言語モデル(LLM)は、特に多言語文脈において顕著な性能を示した。
近年の研究では、LLMは、ある言語で学んだスキルを他の言語に伝達することができることが示唆されているが、この能力の背後にある内部メカニズムはいまだ不明である。
本稿では,LLMの内部動作に関する知見を提供し,言語間能力の向上のための基盤を提供する。
論文 参考訳(メタデータ) (2024-10-15T15:49:15Z) - VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
複数粒度アライメントを持つコントラスト学習に基づく言語間事前学習モデルVECO2.0を提案する。
具体的には、シーケンス・ツー・シーケンスアライメントが誘導され、並列対の類似性を最大化し、非並列対を最小化する。
トークン・ツー・トークンのアライメントは、シソーラス辞書を介して発掘された同義トークンと、バイリンガルな例の他の未使用トークンとのギャップを埋めるために統合される。
論文 参考訳(メタデータ) (2023-04-17T12:23:41Z) - A Simple and Effective Method to Improve Zero-Shot Cross-Lingual
Transfer Learning [6.329304732560936]
既存のゼロショットのクロスリンガル転送法は、並列コーパスやバイリンガル辞書に依存している。
意味喪失のない仮想多言語埋め込みに英語の埋め込みを移すための埋め込み・プッシュ・アテンション・プル・ロバスト・ターゲットを提案する。
論文 参考訳(メタデータ) (2022-10-18T15:36:53Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - Multi-Level Contrastive Learning for Cross-Lingual Alignment [35.33431650608965]
マルチリンガルBERT(mBERT)のような言語間事前学習モデルは、様々な言語間下流のNLPタスクにおいて大きな性能を発揮している。
本稿では,事前学習モデルの言語間能力の向上を図るために,マルチレベルコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-26T07:14:20Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
本稿では,PRLMのための新しい言語間モデル転送フレームワークTreLMを提案する。
シンボルの順序と言語間のシーケンス長の差に対処するため,中間的なTRILayer構造を提案する。
提案手法は,スクラッチから学習した言語モデルに対して,性能と効率の両面で,限られたデータで著しく優れることを示す。
論文 参考訳(メタデータ) (2021-07-27T06:51:13Z) - Analyzing Zero-shot Cross-lingual Transfer in Supervised NLP Tasks [6.7155846430379285]
ゼロショット言語間転送では、ある言語のコーパスでトレーニングされた教師付きnlpタスクが、追加のトレーニングなしで他の言語に直接適用されます。
最近導入されたクロス言語言語モデル(XLM)プリトレーニングは、トランスフォーマースタイルのネットワークでニューラルパラメータの共有をもたらす。
本稿では,XLM事前学習により生じる仮説上強い言語間移動特性を検証することを目的とする。
論文 参考訳(メタデータ) (2021-01-26T09:21:25Z) - From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual
Transfer with Multilingual Transformers [62.637055980148816]
言語モデリングの目的によって事前訓練された多言語トランスフォーマーは、NLPの事実上のデフォルト転送パラダイムとなっている。
膨大な多言語変換器による言語間変換は,リソースリーンシナリオや遠方言語では著しく効果が低いことを示す。
論文 参考訳(メタデータ) (2020-05-01T22:04:58Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
本稿では,文整合コーパスを利用して頑健な言語間単語表現を実現するCBOW手法のバイリンガル拡張を提案する。
提案手法は,他のすべての手法と比較して,言語間文検索性能を著しく向上させる。
また、ゼロショットのクロスランガル文書分類タスクにおいて、ディープRNN法と同等性を実現する。
論文 参考訳(メタデータ) (2019-12-28T16:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。