Quantumness Speeds up Quantum Thermodynamics Processes
- URL: http://arxiv.org/abs/2406.13349v1
- Date: Wed, 19 Jun 2024 08:52:19 GMT
- Title: Quantumness Speeds up Quantum Thermodynamics Processes
- Authors: Ming-Xing Luo,
- Abstract summary: We show the coherence of quantum systems can speed up work extracting with respect to some cyclic evolution beyond all incoherent states.
We further show the genuine entanglement of quantum systems may speed up work extracting beyond any bi-separablestates.
- Score: 1.3597551064547502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum thermodynamic process involves manipulating and controlling quantum states to extract energy or perform computational tasks with high efficiency. There is still no efficientgeneral method to theoretically quantify the effect of the quantumness of coherence and entanglement in work extraction. In this work, we propose a thermodynamics speed to quantify theextracting work. We show that the coherence of quantum systems can speed up work extractingwith respect to some cyclic evolution beyond all incoherent states. We further show the genuine entanglement of quantum systems may speed up work extracting beyond any bi-separablestates. This provides a new thermodynamic method to witness entangled systems without statetomography.
Related papers
- Quantum Thermodynamics [0.0]
Theory of quantum thermodynamics investigates how the concepts of heat, work, and temperature can be carried over to the quantum realm.
Lecture notes provide an introduction to the thermodynamics of small quantum systems.
arXiv Detail & Related papers (2024-06-27T14:28:35Z) - Plasmonic skyrmion quantum thermodynamics [0.0]
We propose a quantum heat engine that capitalizes on the plasmonic skyrmion lattice.
Through rigorous analysis, we demonstrate that the quantum skyrmion substance exhibits zero irreversible work.
Our engine operates without the need for adiabatic shortcuts.
arXiv Detail & Related papers (2023-12-09T19:44:24Z) - Quantum non-Markovianity, quantum coherence and extractable work in a
general quantum process [0.0]
Key concept in quantum thermodynamics is extractable work, which specifies the maximum amount of work that can be extracted from a quantum system.
Different quantities are used to measure extractable work, the most prevalent of which are ergotropy and the difference between the non-equilibrium and equilibrium quantum free energy.
We investigate the evolution of extractable work when an open quantum system goes through a general quantum process described by a completely-positive and trace-preserving dynamical map.
arXiv Detail & Related papers (2023-09-10T11:05:35Z) - Nonequilibrium thermodynamics of quantum coherence beyond linear
response [0.0]
We develop a generic dynamic-Bayesian-network approach to the far-from-equilibrium thermodynamics of coherence.
We obtain criteria for successful coherence-to-work conversion, and identify a nonequilibrium regime where maximum work extraction is increased by quantum coherence.
arXiv Detail & Related papers (2023-01-31T10:24:15Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum field thermal machines [0.0]
We present a detailed proposal how to realize a quantum machine in one-dimensional ultra-cold atomic gases.
We propose models for compression on the system to use it as a piston, and coupling to a bath that gives rise to a valve controlling heat flow.
The active cooling achieved in this way can operate in regimes where existing cooling methods become ineffective.
arXiv Detail & Related papers (2020-06-01T18:08:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.