Effective Edge-wise Representation Learning in Edge-Attributed Bipartite Graphs
- URL: http://arxiv.org/abs/2406.13369v1
- Date: Wed, 19 Jun 2024 09:11:03 GMT
- Title: Effective Edge-wise Representation Learning in Edge-Attributed Bipartite Graphs
- Authors: Hewen Wang, Renchi Yang, Xiaokui Xiao,
- Abstract summary: This paper proposes a graph representation learning (GRL) method for edge-attributed bipartite graphs (EABGs)
It incorporates the structure and attribute semantics from the perspective of edges while considering the separate influence of two heterogeneous node sets U and V in EABGs.
It attains a considerable gain of at most 38.11% in AP and 1.86% in AUC when compared to the best baselines.
- Score: 22.896511369954286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning (GRL) is to encode graph elements into informative vector representations, which can be used in downstream tasks for analyzing graph-structured data and has seen extensive applications in various domains. However, the majority of extant studies on GRL are geared towards generating node representations, which cannot be readily employed to perform edge-based analytics tasks in edge-attributed bipartite graphs (EABGs) that pervade the real world, e.g., spam review detection in customer-product reviews and identifying fraudulent transactions in user-merchant networks. Compared to node-wise GRL, learning edge representations (ERL) on such graphs is challenging due to the need to incorporate the structure and attribute semantics from the perspective of edges while considering the separate influence of two heterogeneous node sets U and V in bipartite graphs. To our knowledge, despite its importance, limited research has been devoted to this frontier, and existing workarounds all suffer from sub-par results. Motivated by this, this paper designs EAGLE, an effective ERL method for EABGs. Building on an in-depth and rigorous theoretical analysis, we propose the factorized feature propagation (FFP) scheme for edge representations with adequate incorporation of long-range dependencies of edges/features without incurring tremendous computation overheads. We further ameliorate FFP as a dual-view FFP by taking into account the influences from nodes in U and V severally in ERL. Extensive experiments on 5 real datasets showcase the effectiveness of the proposed EAGLE models in semi-supervised edge classification tasks. In particular, EAGLE can attain a considerable gain of at most 38.11% in AP and 1.86% in AUC when compared to the best baselines.
Related papers
- Enhancing Missing Data Imputation through Combined Bipartite Graph and Complete Directed Graph [18.06658040186476]
We introduce a novel framework named the Bipartite and Complete Directed Graph Neural Network (BCGNN)
Within BCGNN, observations and features are differentiated as two distinct node types, and the values of observed features are converted into attributed edges linking them.
In parallel, the complete directed graph segment adeptly outlines and communicates the complex interdependencies among features.
arXiv Detail & Related papers (2024-11-07T17:48:37Z) - Against Multifaceted Graph Heterogeneity via Asymmetric Federated Prompt Learning [5.813912301780917]
We propose a Federated Graph Prompt Learning (FedGPL) framework to efficiently enable prompt-based asymmetric graph knowledge transfer.
We conduct theoretical analyses and extensive experiments to demonstrate the significant accuracy and efficiency effectiveness of FedGPL.
arXiv Detail & Related papers (2024-11-04T11:42:25Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
We introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective.
We also propose ADPA as a new directed graph learning paradigm for AMUD.
arXiv Detail & Related papers (2023-12-07T07:54:11Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Improving Knowledge Graph Entity Alignment with Graph Augmentation [11.1094009195297]
Entity alignment (EA) which links equivalent entities across different knowledge graphs (KGs) plays a crucial role in knowledge fusion.
In recent years, graph neural networks (GNNs) have been successfully applied in many embedding-based EA methods.
We propose graph augmentation to create two graph views for margin-based alignment learning and contrastive entity representation learning.
arXiv Detail & Related papers (2023-04-28T01:22:47Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - On Representation Knowledge Distillation for Graph Neural Networks [15.82821940784549]
We study whether preserving the global topology of how the teacher embeds graph data can be a more effective distillation objective for GNNs.
We propose two new approaches which better preserve global topology: (1) Global Structure Preserving loss (GSP) and (2) Graph Contrastive Representation Distillation (G-CRD)
arXiv Detail & Related papers (2021-11-09T06:22:27Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.