論文の概要: Thread: A Logic-Based Data Organization Paradigm for How-To Question Answering with Retrieval Augmented Generation
- arxiv url: http://arxiv.org/abs/2406.13372v1
- Date: Wed, 19 Jun 2024 09:14:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 20:22:37.763429
- Title: Thread: A Logic-Based Data Organization Paradigm for How-To Question Answering with Retrieval Augmented Generation
- Title(参考訳): Thread: Retrieval Augmented Generationによる質問応答のためのロジックベースのデータオーガナイゼーションパラダイム
- Authors: Kaikai An, Fangkai Yang, Liqun Li, Junting Lu, Sitao Cheng, Lu Wang, Pu Zhao, Lele Cao, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, Qi Zhang,
- Abstract要約: Threadは、文書を相互接続性に基づいて論理単位に変換する新しいデータ組織パラダイムである。
オープンドメインと産業シナリオにわたる実験では、ThreadがRAGベースのQAシステムで既存のデータ組織パラダイムより優れていることが示されている。
- 参考スコア(独自算出の注目度): 35.2572390484628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current question answering systems leveraging retrieval augmented generation perform well in answering factoid questions but face challenges with non-factoid questions, particularly how-to queries requiring detailed step-by-step instructions and explanations. In this paper, we introduce Thread, a novel data organization paradigm that transforms documents into logic units based on their inter-connectivity. Extensive experiments across open-domain and industrial scenarios demonstrate that Thread outperforms existing data organization paradigms in RAG-based QA systems, significantly improving the handling of how-to questions.
- Abstract(参考訳): 現在の質問応答システムは, ファクトイドな質問に対して, 非ファクトイドな質問, 特にステップバイステップの詳細な指示と説明を必要とするハウツークエリに対処する上で, 有効である。
本稿では,文書を相互接続性に基づいて論理単位に変換する新しいデータ組織パラダイムThreadを紹介する。
オープンドメインと産業シナリオにわたる大規模な実験は、ThreadがRAGベースのQAシステムで既存のデータ組織パラダイムより優れており、ハウツー質問の処理を大幅に改善していることを示している。
関連論文リスト
- DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs [3.24692739098077]
オープンドメイン複合質問回答 (QA) は証拠検索と推論において難しい課題である。
我々は、オープンドメイン設定で、最先端の訓練済み高密度・スパース検索モデルを評価する。
BM25のような遅延相互作用モデルや驚くほど語彙的モデルは、事前訓練された高密度検索モデルと比較してよく機能する。
論文 参考訳(メタデータ) (2024-06-24T22:09:50Z) - Augmenting Query and Passage for Retrieval-Augmented Generation using LLMs for Open-Domain Question Answering [5.09189220106765]
オープンドメインQAのためのLLMによる質問と通過の増大という,シンプルで効率的な手法を提案する。
提案手法はまず,元の質問を複数段階のサブクエストに分解する。
元の質問を詳細なサブクエストとプランニングで強化することで、検索すべきものについて、クエリをより明確にすることができます。
また,抽出された通路に注意を散らす情報や意見の分割を含む場合の補償として,LLMによる自己生成通路を付加し,回答抽出を指導する。
論文 参考訳(メタデータ) (2024-06-20T12:59:27Z) - FOLLOWUPQG: Towards Information-Seeking Follow-up Question Generation [38.78216651059955]
実世界の情報検索フォローアップ質問生成(FQG)の課題について紹介する。
オープンエンド質問に対するRedditフレンドリーな説明を提供するフォーラムレイマンから収集した,3K以上の実世界のデータセット(初期質問,回答,フォローアップ質問)であるFOLLOWUPQGを構築した。
既存のデータセットとは対照的に、FOLLOWUPQGの質問は情報を求めるためにより多様な実用的戦略を使用し、高次認知能力も示している。
論文 参考訳(メタデータ) (2023-09-10T11:58:29Z) - Event Extraction as Question Generation and Answering [72.04433206754489]
イベント抽出に関する最近の研究は、質問回答(QA)としてタスクを再編成した。
そこで我々は,QGA-EEを提案する。QGモデルにより,定型テンプレートを使わずに,リッチな文脈情報を含む質問を生成することができる。
実験の結果、QGA-EEはACE05の英語データセットで以前のシングルタスクベースのモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-07-10T01:46:15Z) - Summary-Oriented Question Generation for Informational Queries [23.72999724312676]
主文書のトピックに焦点をあてた自己説明的質問を,適切な長さのパスで答えられるようにすることを目的としている。
本モデルでは,NQデータセット(20.1BLEU-4)上でのSQ生成のSOTA性能を示す。
我々はさらに,本モデルをドメイン外のニュース記事に適用し,ゴールド質問の欠如によるQAシステムによる評価を行い,私たちのモデルがニュース記事に対してより良いSQを生成することを実証し,人間による評価によるさらなる確認を行う。
論文 参考訳(メタデータ) (2020-10-19T17:30:08Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - Tell Me How to Ask Again: Question Data Augmentation with Controllable
Rewriting in Continuous Space [94.8320535537798]
機械読解(MRC)、質問生成、質問答え自然言語推論タスクのための制御可能な書き換えベースの質問データ拡張(CRQDA)。
質問データ拡張タスクを制約付き質問書き換え問題として扱い、コンテキスト関連、高品質、多様な質問データサンプルを生成する。
論文 参考訳(メタデータ) (2020-10-04T03:13:46Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
オープンドメインの問に答える統合QAフレームワークを提案する。
提案手法は,シングルホップおよびマルチホップのオープンドメインQAデータセットにおいて,最先端技術に匹敵する性能を継続的に達成する。
論文 参考訳(メタデータ) (2020-09-16T04:31:38Z) - Guided Transformer: Leveraging Multiple External Sources for
Representation Learning in Conversational Search [36.64582291809485]
あいまいなクエリやフェースドクエリに対する質問を明確にすることは,様々な情報検索システムにおいて有用な手法として認識されている。
本稿では,トランスフォーマーネットワークが学習した表現を,外部情報ソースからの新たなアテンション機構を用いて強化する。
実験では,検索の明確化のための公開データセットを用いて,競合するベースラインと比較して大きな改善点を示した。
論文 参考訳(メタデータ) (2020-06-13T03:24:53Z) - ClarQ: A large-scale and diverse dataset for Clarification Question
Generation [67.1162903046619]
そこで我々は,スタックエクスチェンジから抽出したポストコメンデーションに基づいて,多様な,大規模な明確化質問データセットの作成を支援する,新しいブートストラップフレームワークを考案した。
質問応答の下流タスクに適用することで,新たに作成したデータセットの有用性を定量的に示す。
我々はこのデータセットを公開し、ダイアログと質問応答システムの拡張という大きな目標を掲げて、質問生成の分野の研究を促進する。
論文 参考訳(メタデータ) (2020-06-10T17:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。