論文の概要: CoAct: A Global-Local Hierarchy for Autonomous Agent Collaboration
- arxiv url: http://arxiv.org/abs/2406.13381v1
- Date: Wed, 19 Jun 2024 09:23:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 20:22:37.751616
- Title: CoAct: A Global-Local Hierarchy for Autonomous Agent Collaboration
- Title(参考訳): CoAct: 自律エージェントコラボレーションのためのグローバルローカル階層
- Authors: Xinming Hou, Mingming Yang, Wenxiang Jiao, Xing Wang, Zhaopeng Tu, Wayne Xin Zhao,
- Abstract要約: 既存のLLMは、様々なNLPタスクで顕著なパフォーマンスを示すが、それでも複雑な現実世界タスクに苦戦している。
本稿では,人間社会における階層的計画と協調のパターンをLLMシステムに伝達するCoActフレームワークを提案する。
- 参考スコア(独自算出の注目度): 87.51781348070914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing LLMs exhibit remarkable performance on various NLP tasks, but still struggle with complex real-world tasks, even equipped with advanced strategies like CoT and ReAct. In this work, we propose the CoAct framework, which transfers the hierarchical planning and collaboration patterns in human society to LLM systems. Specifically, our CoAct framework involves two agents: (1) A global planning agent, to comprehend the problem scope, formulate macro-level plans and provide detailed sub-task descriptions to local execution agents, which serves as the initial rendition of a global plan. (2) A local execution agent, to operate within the multi-tier task execution structure, focusing on detailed execution and implementation of specific tasks within the global plan. Experimental results on the WebArena benchmark show that CoAct can re-arrange the process trajectory when facing failures, and achieves superior performance over baseline methods on long-horizon web tasks. Code is available at https://github.com/xmhou2002/CoAct.
- Abstract(参考訳): 既存のLLMは、様々なNLPタスクで顕著なパフォーマンスを示すが、CoTやReActのような高度な戦略も備えた複雑な実世界のタスクに苦戦している。
本研究では,人間社会における階層的計画と協調のパターンをLLMシステムに伝達するCoActフレームワークを提案する。
具体的には,1)グローバルプランニングエージェントが問題の範囲を理解し,マクロレベルプランを定式化し,ローカル実行エージェントに詳細なサブタスク記述を提供する。
2)グローバルプラン内の特定のタスクの詳細な実行と実装に焦点を当てた,多層タスク実行構造内で動作するローカル実行エージェント。
WebArenaベンチマークの実験的結果は、CoActが障害に直面したときにプロセスの軌道を再構成できることを示し、長い水平Webタスクのベースラインメソッドよりも優れたパフォーマンスを実現している。
コードはhttps://github.com/xmhou2002/CoAct.comで入手できる。
関連論文リスト
- CaPo: Cooperative Plan Optimization for Efficient Embodied Multi-Agent Cooperation [98.11670473661587]
CaPoは,1)メタプラン生成,2)プログレッシブなメタプランと実行の2つのフェーズで協調効率を向上する。
3Dworld Multi-Agent TransportとCommunicative Watch-And-Helpタスクの実験結果は、CaPoが最先端技術と比較してタスク完了率と効率をはるかに高めることを示した。
論文 参考訳(メタデータ) (2024-11-07T13:08:04Z) - DynaSaur: Large Language Agents Beyond Predefined Actions [108.75187263724838]
既存のLLMエージェントシステムは、通常、各ステップで固定セットと事前定義されたセットからアクションを選択する。
動作の動的生成と構成をオンラインで実現するLLMエージェントフレームワークを提案する。
GAIAベンチマーク実験により, このフレームワークは柔軟性が向上し, 従来の手法よりも優れていたことが確認された。
論文 参考訳(メタデータ) (2024-11-04T02:08:59Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorFBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorFEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することができることを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - Meta-Task Planning for Language Agents [13.550774629515843]
大規模言語モデルベースエージェント(LLMエージェント)は、人工知能(AGI)を実現するための有望なパラダイムとして登場した。
本稿では,メタタスク計画(Meta-Task Planning, MTP)を紹介する。
MTPはTravelPlannerで平均$sim40%$成功率を達成した。
論文 参考訳(メタデータ) (2024-05-26T10:33:17Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agentは、タスク解決におけるLarge Language Models(LLM)の機能を強化するように設計されている。
我々のフレームワークには、階層オブジェクトとキー結果の生成とマルチレベル評価という、2つの新しいモジュールが含まれています。
論文 参考訳(メタデータ) (2023-11-28T06:16:30Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
As-Needed Decomposition and Planning for Complex Tasks (ADaPT)について紹介する。
ADaPTは、Large Language Modelsがそれらを実行できない場合、複雑なサブタスクを明示的に計画し、分解する。
以上の結果から,ADaPTは強いベースラインを確立した。
論文 参考訳(メタデータ) (2023-11-08T17:59:15Z) - ALMA: Hierarchical Learning for Composite Multi-Agent Tasks [21.556661319375255]
本稿では,構造化タスクを活用可能な汎用学習手法であるALMAを紹介する。
ALMAは高レベルのサブタスク割り当てポリシーと低レベルのエージェントポリシーを同時に学習する。
ALMAは様々な課題のある環境で高度な協調行動を学ぶことを実証する。
論文 参考訳(メタデータ) (2022-05-27T19:12:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。