Optimal Diffractive Focusing of Quantum Waves
- URL: http://arxiv.org/abs/2406.13545v1
- Date: Wed, 19 Jun 2024 13:30:51 GMT
- Title: Optimal Diffractive Focusing of Quantum Waves
- Authors: Maxim A. Efremov, Felix Hufnagel, Hugo Larocque, Wolfgang P. Schleich, Ebrahim Karimi,
- Abstract summary: We derive the optimal, real-valued wave function for focusing in one and two space dimensions without the use of any phase component.
We experimentally demonstrate these focusing properties on optical beams using both reflective and transmissive liquid crystal devices.
- Score: 0.09118034517251884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Following the familiar analogy between the optical paraxial wave equation and the Schr\"odinger equation, we derive the optimal, real-valued wave function for focusing in one and two space dimensions without the use of any phase component. We compare and contrast the focusing parameters of the optimal waves with those of other diffractive focusing approaches, such as Fresnel zones. Moreover, we experimentally demonstrate these focusing properties on optical beams using both reflective and transmissive liquid crystal devices. Our results provide an alternative direction for focusing waves where phase elements are challenging to implement, such as for X-rays, THz radiation, and electron beams.
Related papers
- Shaping entangled photons through thick scattering media using an advanced wave beacon [0.0]
Entangled photons propagate through a complex medium such as a biological tissue or a turbulent atmosphere.
Using wavefront shaping to compensate for the scattering and retrieve the two-photon correlations is challenging due to the low signal-to-noise ratio.
We propose and demonstrate a new feedback mechanism that is inspired by Klyshko's advanced wave picture.
arXiv Detail & Related papers (2024-03-27T07:56:13Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Reconstructing the multiphoton spatial wave function with coincidence
wavefront sensing [7.600005876710375]
We introduce the coincidence wavefront sensing (CWS) method to reconstruct the phase of the multiphoton transverse spatial wave function.
Numerical simulations of two-photon cases using the weak measurement wavefront sensor are performed to test its correctness.
arXiv Detail & Related papers (2023-04-01T05:51:25Z) - Spatial and temporal characteristics of spontaneous parametric down-conversion with varying focal planes of interacting beams [0.0]
Spontaneous parametric down-conversion (SPDC) is a widely used process to prepare entangled photon pairs.
The exact focal plane position of the pump beam relative to those of the detection modes is difficult to determine in a real experiment.
In this work, we consider variable positions of focal planes and investigate how shifts of these focal planes influence the spatial and temporal properties of photon pairs.
arXiv Detail & Related papers (2022-12-23T20:04:24Z) - Enhancing the robustness of coupling between a single emitter and a
photonic crystal waveguide [62.997667081978825]
We use this model to propose approaches to the design of a photonic crystal waveguide maximizing the Purcell enhancement at a target wavelength.
Numerical simulations indicate that the proposed structures exhibit robustness to fabrication defects introduced into photonic crystal geometry.
arXiv Detail & Related papers (2022-10-13T21:01:46Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Bandwidth control of the biphoton wavefunction exploiting
spatio-temporal correlations [0.0]
We study how the waists of the detection and pump beams impact on the spectral bandwidth of the photons.
This allows for a simple experimental implementation to control the bandwidth of the biphoton spectra.
arXiv Detail & Related papers (2021-04-28T13:30:00Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Overlapping two standing-waves in a microcavity for a multi-atom photon
interface [0.0]
We develop a light-matter interface enabling strong and uniform coupling between a chain of cold atoms and photons of an optical cavity.
This interface is a fiber Fabry-Perot cavity doubly resonant for both the wavelength of the atomic transition and for a geometrically commensurate red-detuned intracavity trapping lattice.
arXiv Detail & Related papers (2020-03-05T15:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.