論文の概要: Enhancing Travel Choice Modeling with Large Language Models: A Prompt-Learning Approach
- arxiv url: http://arxiv.org/abs/2406.13558v2
- Date: Sat, 22 Jun 2024 14:44:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 13:26:35.291410
- Title: Enhancing Travel Choice Modeling with Large Language Models: A Prompt-Learning Approach
- Title(参考訳): 大規模言語モデルによる旅行選択モデルの実現--Prompt-Learningアプローチ
- Authors: Xuehao Zhai, Hanlin Tian, Lintong Li, Tianyu Zhao,
- Abstract要約: 本稿では,予測精度を大幅に向上させ,個々の予測に対して明確な説明を提供する,プロンプト学習に基づく大規模言語モデル(LLM)フレームワークを提案する。
スイスで収集されたLondon Passenger Mode Choice(LPMC)とOptima-Mode(Optima-Mode)の2つの選択肢データセットを用いて,フレームワークの有効性を検証した。
その結果,LLMは人々の選択を予測する上で,最先端のディープラーニング手法や個別選択モデルよりも優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 6.913791588789051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Travel choice analysis is crucial for understanding individual travel behavior to develop appropriate transport policies and recommendation systems in Intelligent Transportation Systems (ITS). Despite extensive research, this domain faces two critical challenges: a) modeling with limited survey data, and b) simultaneously achieving high model explainability and accuracy. In this paper, we introduce a novel prompt-learning-based Large Language Model(LLM) framework that significantly improves prediction accuracy and provides explicit explanations for individual predictions. This framework involves three main steps: transforming input variables into textual form; building of demonstrations similar to the object, and applying these to a well-trained LLM. We tested the framework's efficacy using two widely used choice datasets: London Passenger Mode Choice (LPMC) and Optima-Mode collected in Switzerland. The results indicate that the LLM significantly outperforms state-of-the-art deep learning methods and discrete choice models in predicting people's choices. Additionally, we present a case of explanation illustrating how the LLM framework generates understandable and explicit explanations at the individual level.
- Abstract(参考訳): 旅行選択分析は、知的交通システム(ITS)における適切な交通政策とレコメンデーションシステムを開発するために、個々の旅行行動を理解するために不可欠である。
広範な研究にもかかわらず、この領域は2つの重要な課題に直面している。
イ 限られた調査データによるモデリング及び
ロ 高いモデル説明可能性及び精度を同時に達成すること。
本稿では,予測精度を大幅に向上させ,個々の予測に対して明確な説明を提供する,プロンプト学習に基づく大規模言語モデル(LLM)フレームワークを提案する。
このフレームワークには、入力変数をテキスト形式に変換すること、オブジェクトに似たデモを構築すること、これらを十分に訓練されたLLMに適用すること、の3つの主要なステップが含まれている。
スイスで収集されたLondon Passenger Mode Choice(LPMC)とOptima-Mode(Optima-Mode)の2つの選択肢データセットを用いて,フレームワークの有効性を検証した。
その結果,LLMは人々の選択を予測する上で,最先端のディープラーニング手法や個別選択モデルよりも優れていたことが示唆された。
さらに,LLMフレームワークが個々のレベルで理解し易く明示的な説明を生成する方法について解説する。
関連論文リスト
- LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models [0.8133739801185272]
小さい言語モデルと大きい言語モデルの間の推論能力のアライメントは、主にスーパーバイザード・ファイン・チューニング(SFT)を通して行われる。
そこで本研究では,より小さな言語モデルを用いて自己定義する自己記述型指導手法を提案する。
コモンセンスと数学の推論タスクで得られた結果は、このアプローチがドメイン内とドメイン外の両方のシナリオでインストラクションチューニングを著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-01T09:10:27Z) - Supervised Fine-Tuning as Inverse Reinforcement Learning [8.044033685073003]
LLM(Large Language Models)の整合性に対する一般的なアプローチは、一般的に人間やAIのフィードバックに依存します。
本研究では,このようなデータセットの有効性に疑問を呈し,専門家による実演との整合性がより現実的であることを証明した様々なシナリオを探索する。
論文 参考訳(メタデータ) (2024-03-18T17:52:57Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を用いて広範囲のタスクを実行するという印象的な能力を示している。
本研究ではまず,データとモデルの両方の側面から,この分散に寄与する要因を再検討し,実演の選択がデータとモデルに依存していることを確かめる。
本研究では,データとモデルに依存した実演選択手法である textbfTopK + ConE を提案する。
論文 参考訳(メタデータ) (2024-01-22T16:25:27Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
大規模言語モデル(LLM)は、様々な自然言語理解タスクにおいて顕著な能力を示している。
我々は,LLMを用いたテキスト内学習を支援するための説明型ソフトアンサンブルフレームワークであるEASEを提案する。
論文 参考訳(メタデータ) (2023-11-13T06:13:38Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
本稿では,モデル解釈のためのモデル非依存能率直接(MEED)FSフレームワークを提案する。
我々のフレームワークは、正当性、ショートカット、モデルの識別可能性、情報伝達に関する懸念を緩和する。
我々のAILメカニズムは、選択した特徴と目標の間の条件分布を学習するのに役立ちます。
論文 参考訳(メタデータ) (2020-06-09T16:27:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。