論文の概要: Aligning LLM with human travel choices: a persona-based embedding learning approach
- arxiv url: http://arxiv.org/abs/2505.19003v1
- Date: Sun, 25 May 2025 06:54:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.827046
- Title: Aligning LLM with human travel choices: a persona-based embedding learning approach
- Title(参考訳): 人的移動選択を考慮したLLMのアライメント--ペルソナによる埋め込み学習アプローチ
- Authors: Tianming Liu, Manzi Li, Yafeng Yin,
- Abstract要約: 本稿では,大規模言語モデルと人間の旅行選択行動の整合性を示す新しい枠組みを提案する。
我々のフレームワークは、パーソナ推論とロードプロセスを使用して、アライメントを強化するのに適したプロンプトでLLMを条件付けします。
- 参考スコア(独自算出の注目度): 15.11130742093296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large language models (LLMs) presents new opportunities for travel demand modeling. However, behavioral misalignment between LLMs and humans presents obstacles for the usage of LLMs, and existing alignment methods are frequently inefficient or impractical given the constraints of typical travel demand data. This paper introduces a novel framework for aligning LLMs with human travel choice behavior, tailored to the current travel demand data sources. Our framework uses a persona inference and loading process to condition LLMs with suitable prompts to enhance alignment. The inference step establishes a set of base personas from empirical data, and a learned persona loading function driven by behavioral embeddings guides the loading process. We validate our framework on the Swissmetro mode choice dataset, and the results show that our proposed approach significantly outperformed baseline choice models and LLM-based simulation models in predicting both aggregate mode choice shares and individual choice outcomes. Furthermore, we showcase that our framework can generate insights on population behavior through interpretable parameters. Overall, our research offers a more adaptable, interpretable, and resource-efficient pathway to robust LLM-based travel behavior simulation, paving the way to integrate LLMs into travel demand modeling practice in the future.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、旅行需要モデリングの新しい機会をもたらす。
しかし, LLM と人間間の行動的不整合は LLM の使用に障害を生じさせ, 既存のアライメント手法は典型的な旅行需要データに制約があるため, しばしば非効率あるいは非実用的である。
本稿では,現在の旅行需要データソースに合わせて,LLMを人間の旅行選択行動と整合させる新しい枠組みを提案する。
我々のフレームワークは、パーソナ推論とロードプロセスを使用して、アライメントを強化するのに適したプロンプトでLLMを条件付けします。
推論ステップは、経験データからベースペルソナのセットを確立し、行動埋め込みによって駆動される学習ペルソナロード機能により、ロードプロセスがガイドされる。
提案手法は,Swissmetroモード選択データセット上での枠組みを検証し,提案手法がベースライン選択モデルとLCMに基づくシミュレーションモデルより有意に優れており,集合モード選択共有と個々の選択結果の両方を予測することができることを示した。
さらに,本フレームワークは,解釈可能なパラメータによって集団行動の洞察を生成できることを示す。
全体として、我々の研究は、より適応的で、解釈可能で、資源効率のよいLSMベースの旅行行動シミュレーションの経路を提供し、将来、LSMを旅行需要モデリングの実践に統合する道を開いた。
関連論文リスト
- Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
大規模言語モデル(LLM)は、強力な一般化可能な推論と計画能力を示している。
本研究では,LLMのゼロショットナビゲーションと経路生成機能について,データセットの構築と評価プロトコルの提案により検討する。
このようなタスクが適切に構成されている場合、現代のLCMは、目標に到達するために生成された動きでナビゲーションを自律的に精錬しながら障害を回避するためのかなりの計画能力を示す。
論文 参考訳(メタデータ) (2025-03-10T13:39:09Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - AI-Driven Day-to-Day Route Choice [15.934133434324755]
LLMTravelerは過去の経験から学び、検索したデータと性格特性のバランスをとることで意思決定を行うエージェントである。
本稿では,LLMTravelerが日常の混雑ゲーム2段階を通じて人間的な意思決定を再現する能力について,体系的に評価する。
この能力は、旅行者の新しいポリシーに対する反応やネットワークの変更をシミュレートするなど、交通政策立案に有用な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-04T14:13:38Z) - Enhancing Travel Choice Modeling with Large Language Models: A Prompt-Learning Approach [6.913791588789051]
本稿では,予測精度を大幅に向上させ,個々の予測に対して明確な説明を提供する,プロンプト学習に基づく大規模言語モデル(LLM)フレームワークを提案する。
スイスで収集されたLondon Passenger Mode Choice(LPMC)とOptima-Mode(Optima-Mode)の2つの選択肢データセットを用いて,フレームワークの有効性を検証した。
その結果,LLMは人々の選択を予測する上で,最先端のディープラーニング手法や個別選択モデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-06-19T13:46:08Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
大規模言語モデル(LLM)は、特定のグループや集団の意見が不足している偏りのある応答を生成することが知られている。
本稿では, LLM を用いて特定の視点の制御可能な生成を実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T19:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。