A Study on the Effect of Color Spaces in Learned Image Compression
- URL: http://arxiv.org/abs/2406.13709v1
- Date: Wed, 19 Jun 2024 17:05:28 GMT
- Title: A Study on the Effect of Color Spaces in Learned Image Compression
- Authors: Srivatsa Prativadibhayankaram, Mahadev Prasad Panda, Jürgen Seiler, Thomas Richter, Heiko Sparenberg, Siegfried Fößel, André Kaup,
- Abstract summary: We present a comparison between color spaces namely YUV, LAB, RGB and their effect on learned image compression.
We use the structure and color based learned image% (SLIC) from our prior work, which consists of two branches - one for the luminance component (Y or L) and another for chrominance components (UV or AB)
- Score: 14.39599746127334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a comparison between color spaces namely YUV, LAB, RGB and their effect on learned image compression. For this we use the structure and color based learned image codec (SLIC) from our prior work, which consists of two branches - one for the luminance component (Y or L) and another for chrominance components (UV or AB). However, for the RGB variant we input all 3 channels in a single branch, similar to most learned image codecs operating in RGB. The models are trained for multiple bitrate configurations in each color space. We report the findings from our experiments by evaluating them on various datasets and compare the results to state-of-the-art image codecs. The YUV model performs better than the LAB variant in terms of MS-SSIM with a Bj{\o}ntegaard delta bitrate (BD-BR) gain of 7.5\% using VTM intra-coding mode as the baseline. Whereas the LAB variant has a better performance than YUV model in terms of CIEDE2000 having a BD-BR gain of 8\%. Overall, the RGB variant of SLIC achieves the best performance with a BD-BR gain of 13.14\% in terms of MS-SSIM and a gain of 17.96\% in CIEDE2000 at the cost of a higher model complexity.
Related papers
- Multispectral Texture Synthesis using RGB Convolutional Neural Networks [2.3213238782019316]
State-of-the-art RGB texture synthesis algorithms rely on style distances that are computed through statistics of deep features.
We propose two solutions to extend these methods to multispectral imaging.
arXiv Detail & Related papers (2024-10-21T13:49:54Z) - Diffusion-based RGB-D Semantic Segmentation with Deformable Attention Transformer [10.982521876026281]
We introduce a diffusion-based framework to address the RGB-D semantic segmentation problem.
We demonstrate that utilizing a Deformable Attention Transformer as the encoder to extract features from depth images effectively captures the characteristics of invalid regions in depth measurements.
arXiv Detail & Related papers (2024-09-23T15:23:01Z) - ViDSOD-100: A New Dataset and a Baseline Model for RGB-D Video Salient Object Detection [51.16181295385818]
We first collect an annotated RGB-D video SODOD (DSOD-100) dataset, which contains 100 videos within a total of 9,362 frames.
All the frames in each video are manually annotated to a high-quality saliency annotation.
We propose a new baseline model, named attentive triple-fusion network (ATF-Net) for RGB-D salient object detection.
arXiv Detail & Related papers (2024-06-18T12:09:43Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images.
We propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI)
It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters.
arXiv Detail & Related papers (2024-02-08T16:47:43Z) - SLIC: A Learned Image Codec Using Structure and Color [0.41232474244672235]
We propose a structure and color based encoder (SLIC) in which the task of compression is split into that of luminance and chrominance.
The deep learning model is built with a novel multi-scale architecture for Y and UV channels.
Various experiments are carried out to study and analyze the performance of the proposed model.
arXiv Detail & Related papers (2024-01-30T18:39:54Z) - Color Learning for Image Compression [1.2330326247154968]
We propose a novel deep learning model architecture, where the task of image compression is divided into two sub-tasks.
The model has two separate branches to process the luminance and chrominance components.
We demonstrate the benefits of our approach and compare the performance to other codecs.
arXiv Detail & Related papers (2023-06-30T08:16:48Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - Learning Weighting Map for Bit-Depth Expansion within a Rational Range [64.15915577164894]
Bit-depth expansion (BDE) is one of the emerging technologies to display high bit-depth (HBD) image from low bit-depth (LBD) source.
Existing BDE methods have no unified solution for various BDE situations.
We design a bit restoration network (BRNet) to learn a weight for each pixel, which indicates the ratio of the replenished value within a rational range.
arXiv Detail & Related papers (2022-04-26T02:27:39Z) - RGB-D Saliency Detection via Cascaded Mutual Information Minimization [122.8879596830581]
Existing RGB-D saliency detection models do not explicitly encourage RGB and depth to achieve effective multi-modal learning.
We introduce a novel multi-stage cascaded learning framework via mutual information minimization to "explicitly" model the multi-modal information between RGB image and depth data.
arXiv Detail & Related papers (2021-09-15T12:31:27Z) - A Combined Deep Learning based End-to-End Video Coding Architecture for
YUV Color Space [14.685161934404123]
Most of the existing deep learning based end-to-end video coding (DLEC) architectures are designed specifically for RGB color format.
This paper introduces a new DLEC architecture for video coding to effectively support YUV 4:2:0 and compares its performance against the HEVC standard.
arXiv Detail & Related papers (2021-04-01T23:41:06Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.