論文の概要: DPO: Dual-Perturbation Optimization for Test-time Adaptation in 3D Object Detection
- arxiv url: http://arxiv.org/abs/2406.13891v2
- Date: Sun, 28 Jul 2024 07:36:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 22:48:36.618829
- Title: DPO: Dual-Perturbation Optimization for Test-time Adaptation in 3D Object Detection
- Title(参考訳): DPO:3次元物体検出におけるテスト時間適応のための二重摂動最適化
- Authors: Zhuoxiao Chen, Zixin Wang, Yadan Luo, Sen Wang, Zi Huang,
- Abstract要約: 実世界での3D検出器のトレーニングは、テストデータの分布がトレーニングデータから著しくずれたときに、しばしば不満足なパフォーマンスをもたらす。
我々は,textbfunderlineTest-underlinetime underlineAdaptation in Underline3Dに対して,textbfdual-perturbation Optimization (DPO)を提案する。
我々は、平らなロスランドスケープを育むためのシャープさを最小限に抑え、小さなデータバリエーションに対するモデルレジリエンスを確保する。
- 参考スコア(独自算出の注目度): 34.04061546178302
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: LiDAR-based 3D object detection has seen impressive advances in recent times. However, deploying trained 3D detectors in the real world often yields unsatisfactory performance when the distribution of the test data significantly deviates from the training data due to different weather conditions, object sizes, \textit{etc}. A key factor in this performance degradation is the diminished generalizability of pre-trained models, which creates a sharp loss landscape during training. Such sharpness, when encountered during testing, can precipitate significant performance declines, even with minor data variations. To address the aforementioned challenges, we propose \textbf{dual-perturbation optimization (DPO)} for \textbf{\underline{T}est-\underline{t}ime \underline{A}daptation in \underline{3}D \underline{O}bject \underline{D}etection (TTA-3OD)}. We minimize the sharpness to cultivate a flat loss landscape to ensure model resiliency to minor data variations, thereby enhancing the generalization of the adaptation process. To fully capture the inherent variability of the test point clouds, we further introduce adversarial perturbation to the input BEV features to better simulate the noisy test environment. As the dual perturbation strategy relies on trustworthy supervision signals, we utilize a reliable Hungarian matcher to filter out pseudo-labels sensitive to perturbations. Additionally, we introduce early Hungarian cutoff to avoid error accumulation from incorrect pseudo-labels by halting the adaptation process. Extensive experiments across three types of transfer tasks demonstrate that the proposed DPO significantly surpasses previous state-of-the-art approaches, specifically on Waymo $\rightarrow$ KITTI, outperforming the most competitive baseline by 57.72\% in $\text{AP}_\text{3D}$ and reaching 91\% of the fully supervised upper bound.
- Abstract(参考訳): LiDARをベースとした3Dオブジェクト検出は、近年目覚ましい進歩を遂げている。
しかし、実世界における訓練された3D検出器の展開は、テストデータの分布が異なる気象条件、オブジェクトサイズ、 \textit{etc} によってトレーニングデータから著しくずれている場合、不満足なパフォーマンスをもたらすことが多い。
この性能劣化の重要な要因は、事前訓練されたモデルの一般化可能性の低下である。
このようなシャープさは、テスト中に遭遇すると、小さなデータバリエーションであっても、大幅なパフォーマンス低下を引き起こす可能性がある。
上記の課題に対処するために, \textbf{\underline{T}est-\underline{t}ime \underline{A}daptation in \underline{3}D \underline{O}bject \underline{D}etection (TTA-3OD)} に対する \textbf{dual-perturbation Optimization (DPO)} を提案する。
我々は、平らなロスランドスケープを耕作するシャープさを最小限に抑え、小さなデータ変動に対するモデルレジリエンスを確保することにより、適応プロセスの一般化を向上する。
試験点雲の固有変動をフルに把握するために、入力されたBEV特徴に対して逆摂動を導入し、ノイズの多い試験環境をより良くシミュレートする。
二重摂動戦略は信頼できる監視信号に依存しているため、信頼性の高いハンガリーのマッカーを用いて摂動に敏感な擬似ラベルをフィルタリングする。
また,不正確な擬似ラベルからの誤りの蓄積を回避するために,適応処理を停止させることにより早期ハンガリー語のカットオフを導入する。
特にWaymo $\rightarrow$ KITTIにおいて、提案されたDPOが従来の最先端のアプローチを大幅に上回り、最も競争力のあるベースラインである$\text{AP}_\text{3D}$の57.72\%を上回り、完全に監督された上限の91\%に達することを示した。
関連論文リスト
- Source-Free Test-Time Adaptation For Online Surface-Defect Detection [29.69030283193086]
テスト時間適応型表面欠陥検出手法を提案する。
推論中にトレーニング済みのモデルを新しいドメインやクラスに適応させる。
実験では、最先端の技術よりも優れています。
論文 参考訳(メタデータ) (2024-08-18T14:24:05Z) - Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
教師なし3次元検出のためのLiDAR-2D Self-paced Learning (LiSe)を提案する。
RGB画像は、正確な2Dローカライゼーションキューを提供するLiDARデータの貴重な補完となる。
本フレームワークでは,適応型サンプリングと弱いモデルアグリゲーション戦略を組み込んだ自己評価学習パイプラインを考案する。
論文 参考訳(メタデータ) (2024-07-11T14:58:49Z) - Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt [37.98336090671441]
概念 textbfDrift textbfDetection antextbfD textbfAdaptation (D3A)
まずドリフトの概念を検知し、次に急激な適応の検出の後、現在のモデルをドリフトされた概念に積極的に適応する。
これは、トレイン-テストのパフォーマンスの不整合に寄与する重要な要因であるデータ分散ギャップを軽減するのに役立ちます。
論文 参考訳(メタデータ) (2024-03-22T04:44:43Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - DQS3D: Densely-matched Quantization-aware Semi-supervised 3D Detection [6.096961718434965]
本研究では,3次元屋内空間の散在を考慮し,半教師付き3次元物体検出の課題について検討する。
我々は,最近セミ教師付き学習の顕著な進歩を招いた,堅牢で原則化された自己学習の枠組みに頼っている。
そこで本研究では,空間的に密集したトレーニング信号を可能にする,最初の半教師付き3次元検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-25T17:59:54Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
そこで本研究では,モデル性能を向上させるために,未ラベルの点群をトレーニングに採用するための半教師付き点群セマンティックセマンティックセマンティックセマンティクスを提案する。
近年の自己監督型タスクのコントラスト損失に触発されて,特徴表現とモデル一般化能力を高めるためのガイド付きポイントコントラスト損失を提案する。
論文 参考訳(メタデータ) (2021-10-15T16:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。