論文の概要: Generative AI for Enhancing Active Learning in Education: A Comparative Study of GPT-3.5 and GPT-4 in Crafting Customized Test Questions
- arxiv url: http://arxiv.org/abs/2406.13903v1
- Date: Thu, 20 Jun 2024 00:25:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:56:21.982416
- Title: Generative AI for Enhancing Active Learning in Education: A Comparative Study of GPT-3.5 and GPT-4 in Crafting Customized Test Questions
- Title(参考訳): 教育におけるアクティブラーニングの促進のためのジェネレーティブAI:カスタムテスト質問におけるGPT-3.5とGPT-4の比較研究
- Authors: Hamdireza Rouzegar, Masoud Makrehchi,
- Abstract要約: 本研究では, LLM, 特に GPT-3.5 と GPT-4 が, グレード9の算数に適した質問をいかに展開できるかを検討する。
反復的手法を用いることで、これらのモデルは、シミュレーションされた「学生」モデルからのフィードバックに応じて、難易度と内容に基づいて質問を調整する。
- 参考スコア(独自算出の注目度): 2.0411082897313984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates how LLMs, specifically GPT-3.5 and GPT-4, can develop tailored questions for Grade 9 math, aligning with active learning principles. By utilizing an iterative method, these models adjust questions based on difficulty and content, responding to feedback from a simulated 'student' model. A novel aspect of the research involved using GPT-4 as a 'teacher' to create complex questions, with GPT-3.5 as the 'student' responding to these challenges. This setup mirrors active learning, promoting deeper engagement. The findings demonstrate GPT-4's superior ability to generate precise, challenging questions and notable improvements in GPT-3.5's ability to handle more complex problems after receiving instruction from GPT-4. These results underscore the potential of LLMs to mimic and enhance active learning scenarios, offering a promising path for AI in customized education. This research contributes to understanding how AI can support personalized learning experiences, highlighting the need for further exploration in various educational contexts
- Abstract(参考訳): 本研究では, LLM, 特に GPT-3.5 と GPT-4 が, 能動的学習原理に則って, 9級数学に適した質問をいかに展開できるかを検討する。
反復的手法を用いることで、これらのモデルは、シミュレーションされた「学生」モデルからのフィードバックに応じて、難易度と内容に基づいて質問を調整する。
この研究の新たな側面は、GPT-4を「教師」として使用して複雑な質問を発生させ、GPT-3.5を「学生」としてこれらの課題に対処することであった。
このセットアップはアクティブな学習を反映し、より深いエンゲージメントを促進する。
以上の結果から, GPT-4の精度, 課題発生能力, GPT-3.5がGPT-4から指示を受けた後, より複雑な問題に対処できることが示唆された。
これらの結果は、LLMがアクティブな学習シナリオを模倣し、拡張する可能性を強調し、カスタマイズされた教育におけるAIにとって有望なパスを提供する。
この研究は、AIがパーソナライズされた学習体験をどのようにサポートするかを理解することに貢献し、様々な教育的文脈におけるさらなる探索の必要性を強調している。
関連論文リスト
- Evaluating GPT-4 at Grading Handwritten Solutions in Math Exams [48.99818550820575]
我々は、最先端のマルチモーダルAIモデル、特にGPT-4oを利用して、大学レベルの数学試験に対する手書きの応答を自動的に評価する。
確率論試験における質問に対する実際の学生の反応を用いて, GPT-4oのスコアと, 様々なプロンプト技術を用いて, 人間の学級のスコアとの整合性を評価する。
論文 参考訳(メタデータ) (2024-11-07T22:51:47Z) - Automatic Generation of Question Hints for Mathematics Problems using Large Language Models in Educational Technology [17.91379291654773]
本研究は,Lumge Language Models (LLMs) を教師として用いて,LLMを通してシミュレーションした学生の効果的なヒントを生成することを目的とする。
その結果, モデル誤差は温度設定の上昇とともに増加することがわかった。
興味深いことに、教師としてのLlama-3-8B-インストラクションはGPT-4oよりも全体的なパフォーマンスが良かった。
論文 参考訳(メタデータ) (2024-11-05T20:18:53Z) - ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning [78.42927884000673]
ExACTは、エージェントアプリケーションのためのo1のようなモデルを構築するために、テスト時間検索と自己学習を組み合わせるアプローチである。
リフレクティブモンテカルロ木探索(Reflective Monte Carlo Tree Search, R-MCTS)は、AIエージェントがその場で意思決定空間を探索する能力を高めるために設計された新しいテストタイムアルゴリズムである。
次に,探索学習(Exploratory Learning)という,外部探索アルゴリズムに頼らずに,エージェントに推論時間での探索を教える新しい学習戦略を紹介する。
論文 参考訳(メタデータ) (2024-10-02T21:42:35Z) - See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses [51.975495361024606]
本稿では,Human-in-the-loopを用いたセルフチェレンジ評価フレームワークを提案する。
GPT-4が答えられないシードインスタンスから始めて、GPT-4に新しいインスタンスを生成するのに使えるエラーパターンを要約するように促します。
次に,GPT-4が生成する1,835個のインスタンスと,人手によるゴールド応答を併用したベンチマーク,SC-G4を構築した。
論文 参考訳(メタデータ) (2024-08-16T19:01:52Z) - LLMs Still Can't Avoid Instanceof: An Investigation Into GPT-3.5, GPT-4
and Bard's Capacity to Handle Object-Oriented Programming Assignments [0.0]
大規模言語モデル(LLM)は、プログラミング課題を解決しながら学生を支援するための有望なツールとして登場した。
本研究では,3つの卓越したLCMを用いて,実環境におけるOOPの課題を解決する実験を行った。
この結果から、モデルはエクササイズに対する動作可能なソリューションを多く達成する一方で、OOPのベストプラクティスを見落としていることが判明した。
論文 参考訳(メタデータ) (2024-03-10T16:40:05Z) - Benchmarking GPT-4 on Algorithmic Problems: A Systematic Evaluation of Prompting Strategies [47.129504708849446]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらした。
LLMは体系的な一般化を欠き、学習された統計正則をトレーニング分布の外へ外挿することができる。
本稿では,最も先進的なLCMの1つであるGPT-4の系統的なベンチマークを行う。
論文 参考訳(メタデータ) (2024-02-27T10:44:52Z) - Evaluating Large Language Models on the GMAT: Implications for the
Future of Business Education [0.13654846342364302]
本研究では,7大言語モデル(LLM)の性能評価を行う最初のベンチマークを紹介する。
GPT-4 Turboは他のモデルよりも優れているだけでなく、トップビジネススクールの大学院生の平均スコアを上回っている。
教育、評価、教育におけるAIの約束は明確だが、課題は残る。
論文 参考訳(メタデータ) (2024-01-02T03:54:50Z) - Prompt Engineering or Fine Tuning: An Empirical Assessment of Large
Language Models in Automated Software Engineering Tasks [8.223311621898983]
対話型プロンプトを持つ GPT-4 は, 自動プロンプト戦略を持つ GPT-4 に比べて劇的な改善を示した。
完全に自動化されたプロンプトエンジニアリング ループに人間はいない より多くの研究と改善が必要です
論文 参考訳(メタデータ) (2023-10-11T00:21:00Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
我々は,最新のモデルであるGPT-4Vを分析し,LMMの理解を深める。
GPT-4Vは、任意にインターリーブされたマルチモーダル入力を処理するという前例のない能力により、強力なマルチモーダルジェネラリストシステムとなっている。
GPT-4Vの、入力画像に描かれた視覚マーカーを理解するユニークな能力は、新しい人間とコンピュータの相互作用方法をもたらす。
論文 参考訳(メタデータ) (2023-09-29T17:34:51Z) - Sparks of Artificial General Intelligence: Early experiments with GPT-4 [66.1188263570629]
OpenAIが開発したGPT-4は、前例のない規模の計算とデータを使って訓練された。
我々は, GPT-4が数学, コーディング, ビジョン, 医学, 法学, 心理学などにまたがる, 新規で困難な課題を解くことを実証した。
我々は、GPT-4を人工知能(AGI)システムの早期(まだ未完成)版と見なすことができると信じている。
論文 参考訳(メタデータ) (2023-03-22T16:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。