論文の概要: Use Me Wisely: AI-Driven Assessment for LLM Prompting Skills Development
- arxiv url: http://arxiv.org/abs/2503.02532v1
- Date: Tue, 04 Mar 2025 11:56:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:09.021581
- Title: Use Me Wisely: AI-Driven Assessment for LLM Prompting Skills Development
- Title(参考訳): Use Me Wisely: LLMのプロンプティングスキル開発のためのAI駆動アセスメント
- Authors: Dimitri Ognibene, Gregor Donabauer, Emily Theophilou, Cansu Koyuturk, Mona Yavari, Sathya Bursic, Alessia Telari, Alessia Testa, Raffaele Boiano, Davide Taibi, Davinia Hernandez-Leo, Udo Kruschwitz, Martin Ruskov,
- Abstract要約: 大規模言語モデル(LLM)を利用したチャットボットは、様々な領域で普及し、様々なタスクやプロセスをサポートしている。
しかし、プロンプトは非常にタスクに依存し、ドメインに依存しており、ジェネリックアプローチの有効性を制限している。
本研究では, アドホックガイドラインと最小限の注釈付きプロンプトサンプルを用いて, LLM を用いた学習評価を促進できるかどうかを検討する。
- 参考スコア(独自算出の注目度): 5.559706293891474
- License:
- Abstract: The use of large language model (LLM)-powered chatbots, such as ChatGPT, has become popular across various domains, supporting a range of tasks and processes. However, due to the intrinsic complexity of LLMs, effective prompting is more challenging than it may seem. This highlights the need for innovative educational and support strategies that are both widely accessible and seamlessly integrated into task workflows. Yet, LLM prompting is highly task- and domain-dependent, limiting the effectiveness of generic approaches. In this study, we explore whether LLM-based methods can facilitate learning assessments by using ad-hoc guidelines and a minimal number of annotated prompt samples. Our framework transforms these guidelines into features that can be identified within learners' prompts. Using these feature descriptions and annotated examples, we create few-shot learning detectors. We then evaluate different configurations of these detectors, testing three state-of-the-art LLMs and ensembles. We run experiments with cross-validation on a sample of original prompts, as well as tests on prompts collected from task-naive learners. Our results show how LLMs perform on feature detection. Notably, GPT- 4 demonstrates strong performance on most features, while closely related models, such as GPT-3 and GPT-3.5 Turbo (Instruct), show inconsistent behaviors in feature classification. These differences highlight the need for further research into how design choices impact feature selection and prompt detection. Our findings contribute to the fields of generative AI literacy and computer-supported learning assessment, offering valuable insights for both researchers and practitioners.
- Abstract(参考訳): 大規模言語モデル(LLM)を利用したチャットボット、例えばChatGPTの使用は、様々なドメインで人気を集め、様々なタスクやプロセスをサポートしている。
しかし、LLMの本質的な複雑さのため、効果的なプロンプトは見かけ以上に困難である。
これは、タスクワークフローに広くアクセス可能でシームレスに統合された革新的な教育とサポート戦略の必要性を強調します。
しかし、LLMプロンプトは非常にタスクに依存し、ドメインに依存しており、ジェネリックアプローチの有効性を制限している。
本研究では, アドホックガイドラインと最小限の注釈付きプロンプトサンプルを用いて, LLM を用いた学習評価を促進できるかどうかを検討する。
本フレームワークは,これらのガイドラインを学習者の指示で識別できる機能に変換する。
これらの特徴記述と注釈付き例を用いて、数発の学習検出器を作成する。
次に、これらの検出器の異なる構成を評価し、3つの最先端LCMとアンサンブルをテストした。
我々は,従来のプロンプトのサンプルに対してクロスバリデーションを用いた実験を行い,タスクナブ学習者から収集したプロンプトの試験を行った。
以上の結果から,LLMが機能検出に与える影響が示唆された。
GPT-3 や GPT-3.5 Turbo (Instruct) のような近縁なモデルは特徴分類において矛盾した振る舞いを示す。
これらの違いは、設計選択が特徴の選択と迅速な検出にどのように影響するかについて、さらなる研究の必要性を強調している。
本研究は,AIリテラシーとコンピュータ支援学習評価の分野に寄与し,研究者と実践者双方に貴重な知見を提供する。
関連論文リスト
- Enhancing LLM's Ability to Generate More Repository-Aware Unit Tests Through Precise Contextual Information Injection [4.367526927436771]
プロンプトエンジニアリングによって導かれる大規模言語モデル(LLM)は、幅広いタスクを扱う能力に注目を集めている。
LLMは、プロジェクトのグローバルな文脈に対する認識の欠如により、焦点メソッドや関数の単体テストを生成する際に幻覚を示す可能性がある。
我々は,レポジトリ対応の単体テストを生成するLLMの能力を向上するRATesterを提案する。
論文 参考訳(メタデータ) (2025-01-13T15:43:36Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - Large Language Models Can be Lazy Learners: Analyze Shortcuts in
In-Context Learning [28.162661418161466]
大規模言語モデル(LLM)は、最近、コンテキスト内学習に大きな可能性を示している。
本稿では,ショートカットやプロンプト内のスプリアス相関に対するLDMsの依存度について検討する。
より大規模なモデルでは、推論中にプロンプトでショートカットを利用する可能性が高くなるという驚くべき発見が明らかになった。
論文 参考訳(メタデータ) (2023-05-26T20:56:30Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
本稿では,タスク固有の命令でPLMを利用する包括的インストラクション(CINS)を提案する。
命令のスキーマ(定義、制約、プロンプト)と、ToDの3つの重要な下流タスクに対するカスタマイズされた実現を設計する。
これらのToDタスクに対して,小さな検証データを用いた現実的な数ショット学習シナリオで実験を行った。
論文 参考訳(メタデータ) (2021-09-10T03:23:06Z) - Prompt-Learning for Fine-Grained Entity Typing [40.983849729537795]
完全教師付き,少数ショット,ゼロショットシナリオにおける微粒化エンティティタイピングに対するプロンプトラーニングの適用について検討する。
本稿では,エンティティタイプの情報を自動的に要約するために,プロンプトラーニングにおける分布レベルの最適化を行う自己教師型戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T09:39:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。