Beyond Optimism: Exploration With Partially Observable Rewards
- URL: http://arxiv.org/abs/2406.13909v2
- Date: Sat, 09 Nov 2024 00:54:59 GMT
- Title: Beyond Optimism: Exploration With Partially Observable Rewards
- Authors: Simone Parisi, Alireza Kazemipour, Michael Bowling,
- Abstract summary: Exploration in reinforcement learning (RL) remains an open challenge.
We present a novel strategy that overcomes the limitations of existing methods and guarantees convergence to an optimal policy.
- Score: 10.571972176725371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploration in reinforcement learning (RL) remains an open challenge. RL algorithms rely on observing rewards to train the agent, and if informative rewards are sparse the agent learns slowly or may not learn at all. To improve exploration and reward discovery, popular algorithms rely on optimism. But what if sometimes rewards are unobservable, e.g., situations of partial monitoring in bandits and the recent formalism of monitored Markov decision process? In this case, optimism can lead to suboptimal behavior that does not explore further to collapse uncertainty. With this paper, we present a novel exploration strategy that overcomes the limitations of existing methods and guarantees convergence to an optimal policy even when rewards are not always observable. We further propose a collection of tabular environments for benchmarking exploration in RL (with and without unobservable rewards) and show that our method outperforms existing ones.
Related papers
- MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization [91.80034860399677]
Reinforcement learning algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards.
We introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration.
We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits.
arXiv Detail & Related papers (2024-12-16T18:59:53Z) - Successor-Predecessor Intrinsic Exploration [18.440869985362998]
We focus on exploration with intrinsic rewards, where the agent transiently augments the external rewards with self-generated intrinsic rewards.
We propose Successor-Predecessor Intrinsic Exploration (SPIE), an exploration algorithm based on a novel intrinsic reward combining prospective and retrospective information.
We show that SPIE yields more efficient and ethologically plausible exploratory behaviour in environments with sparse rewards and bottleneck states than competing methods.
arXiv Detail & Related papers (2023-05-24T16:02:51Z) - Bandit Social Learning: Exploration under Myopic Behavior [54.767961587919075]
We study social learning dynamics motivated by reviews on online platforms.
Agents collectively follow a simple multi-armed bandit protocol, but each agent acts myopically, without regards to exploration.
We derive stark learning failures for any such behavior, and provide matching positive results.
arXiv Detail & Related papers (2023-02-15T01:57:57Z) - GAN-based Intrinsic Exploration For Sample Efficient Reinforcement
Learning [0.0]
We propose a Geneversarative Adversarial Network-based Intrinsic Reward Module that learns the distribution of the observed states and sends an intrinsic reward that is computed as high for states that are out of distribution.
We evaluate our approach in Super Mario Bros for a no reward setting and in Montezuma's Revenge for a sparse reward setting and show that our approach is indeed capable of exploring efficiently.
arXiv Detail & Related papers (2022-06-28T19:16:52Z) - SEREN: Knowing When to Explore and When to Exploit [14.188362393915432]
We introduce Sive Reinforcement Exploration Network (SEREN) that poses the exploration-exploitation trade-off as a game.
Using a form of policies known as impulse control, switcher is able to determine the best set of states to switch to the exploration policy.
We prove that SEREN converges quickly and induces a natural schedule towards pure exploitation.
arXiv Detail & Related papers (2022-05-30T12:44:56Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL [91.26538493552817]
We present a formulation of hindsight relabeling for meta-RL, which relabels experience during meta-training to enable learning to learn entirely using sparse reward.
We demonstrate the effectiveness of our approach on a suite of challenging sparse reward goal-reaching environments.
arXiv Detail & Related papers (2021-12-02T00:51:17Z) - Long-Term Exploration in Persistent MDPs [68.8204255655161]
We propose an exploration method called Rollback-Explore (RbExplore)
In this paper, we propose an exploration method called Rollback-Explore (RbExplore), which utilizes the concept of the persistent Markov decision process.
We test our algorithm in the hard-exploration Prince of Persia game, without rewards and domain knowledge.
arXiv Detail & Related papers (2021-09-21T13:47:04Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - MADE: Exploration via Maximizing Deviation from Explored Regions [48.49228309729319]
In online reinforcement learning (RL), efficient exploration remains challenging in high-dimensional environments with sparse rewards.
We propose a new exploration approach via textitmaximizing the deviation of the occupancy of the next policy from the explored regions.
Our approach significantly improves sample efficiency over state-of-the-art methods.
arXiv Detail & Related papers (2021-06-18T17:57:00Z) - Reannealing of Decaying Exploration Based On Heuristic Measure in Deep
Q-Network [82.20059754270302]
We propose an algorithm based on the idea of reannealing, that aims at encouraging exploration only when it is needed.
We perform an illustrative case study showing that it has potential to both accelerate training and obtain a better policy.
arXiv Detail & Related papers (2020-09-29T20:40:00Z) - To update or not to update? Delayed Nonparametric Bandits with
Randomized Allocation [5.9814720629540155]
Delayed rewards problem in contextual bandits has been of interest in various practical settings.
We study randomized allocation strategies and provide an understanding on how the exploration-exploitation tradeoff is affected by delays in observing the rewards.
arXiv Detail & Related papers (2020-05-26T23:06:20Z) - Long-Term Visitation Value for Deep Exploration in Sparse Reward
Reinforcement Learning [34.38011902445557]
Reinforcement learning with sparse rewards is still an open challenge.
We present a novel approach that plans exploration actions far into the future by using a long-term visitation count.
Contrary to existing methods which use models of reward and dynamics, our approach is off-policy and model-free.
arXiv Detail & Related papers (2020-01-01T01:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.