論文の概要: Similarity-aware Syncretic Latent Diffusion Model for Medical Image Translation with Representation Learning
- arxiv url: http://arxiv.org/abs/2406.13977v1
- Date: Thu, 20 Jun 2024 03:54:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:27:03.300401
- Title: Similarity-aware Syncretic Latent Diffusion Model for Medical Image Translation with Representation Learning
- Title(参考訳): 表現学習を用いた医用画像翻訳における類似性を考慮した同期潜時拡散モデル
- Authors: Tingyi Lin, Pengju Lyu, Jie Zhang, Yuqing Wang, Cheng Wang, Jianjun Zhu,
- Abstract要約: 非造影CT(non-contrast CT)は画像のコントラストと解剖学的視認性を低下させ、診断の不確実性を増大させる可能性がある。
医用画像翻訳のための潜時拡散モデルに基づく新しいシンプレティック生成モデル(S$2$LDM)を提案する。
S$2$LDMは、シンプレティックエンコーディングと拡散を通じて、異なるモーダル画像の類似性を高め、潜伏空間における重複情報を促進し、対照的に強調された領域でより詳細な医療画像を生成する。
- 参考スコア(独自算出の注目度): 15.234393268111845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-contrast CT (NCCT) imaging may reduce image contrast and anatomical visibility, potentially increasing diagnostic uncertainty. In contrast, contrast-enhanced CT (CECT) facilitates the observation of regions of interest (ROI). Leading generative models, especially the conditional diffusion model, demonstrate remarkable capabilities in medical image modality transformation. Typical conditional diffusion models commonly generate images with guidance of segmentation labels for medical modal transformation. Limited access to authentic guidance and its low cardinality can pose challenges to the practical clinical application of conditional diffusion models. To achieve an equilibrium of generative quality and clinical practices, we propose a novel Syncretic generative model based on the latent diffusion model for medical image translation (S$^2$LDM), which can realize high-fidelity reconstruction without demand of additional condition during inference. S$^2$LDM enhances the similarity in distinct modal images via syncretic encoding and diffusing, promoting amalgamated information in the latent space and generating medical images with more details in contrast-enhanced regions. However, syncretic latent spaces in the frequency domain tend to favor lower frequencies, commonly locate in identical anatomic structures. Thus, S$^2$LDM applies adaptive similarity loss and dynamic similarity to guide the generation and supplements the shortfall in high-frequency details throughout the training process. Quantitative experiments confirm the effectiveness of our approach in medical image translation. Our code will release lately.
- Abstract(参考訳): 非造影CT(non-contrast CT)は画像のコントラストと解剖学的視認性を低下させ、診断の不確実性を増大させる可能性がある。
対照的に、造影CT(CECT)は関心領域(ROI)の観察を促進する。
先導的な生成モデル、特に条件拡散モデルは、医用画像のモダリティ変換において顕著な能力を示す。
典型的な条件拡散モデルでは、医療モード変換のためのセグメンテーションラベルのガイダンスで画像を生成するのが一般的である。
厳密な指導と低濃度への限られたアクセスは、条件付き拡散モデルの実践的臨床応用に困難をもたらす可能性がある。
医療画像翻訳のための潜時拡散モデル(S$^2$LDM)に基づく新しいシンプレティック生成モデルを提案する。
S$^2$LDMは、シンプレティックエンコーディングと拡散を通じて、異なるモーダル画像の類似性を高め、潜伏空間における融合情報を促進し、対照的に強調された領域でより詳細な医療画像を生成する。
しかし、周波数領域における同期潜在空間は低い周波数を好む傾向にあり、通常同じ解剖学的構造にある。
したがって、S$^2$LDMは適応的類似性損失と動的類似性を適用して生成を誘導し、トレーニングプロセス全体を通して高周波詳細の不足を補う。
医用画像翻訳におけるアプローチの有効性を定量的に検証した。
私たちのコードは、最近リリースされます。
関連論文リスト
- Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
CTスキャナーモデルと取得プロトコルのバリエーションは、抽出した放射能特性に有意な変動をもたらす。
LTDiff++は医療画像の特徴抽出を強化するために設計されたマルチスケール潜在拡散モデルである。
論文 参考訳(メタデータ) (2024-10-05T02:13:57Z) - Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
医用画像から画像への変換のためのクロスコンディショニング拡散モデル(CDM)を提案する。
まず、目的のモダリティの分布をモデル化するためのモダリティ固有表現モデル(MRM)を提案する。
そして、MDN(Modality-Decoupled Diffusion Network)を設計し、MRMから効率よく効果的に分布を学習する。
論文 参考訳(メタデータ) (2024-09-13T02:48:56Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Zero-shot Medical Image Translation via Frequency-Guided Diffusion
Models [9.15810015583615]
構造保存画像変換のための拡散モデルを導出するために周波数領域フィルタを用いた周波数誘導拡散モデル(FGDM)を提案する。
その設計に基づいて、FGDMはゼロショット学習を可能にし、ターゲットドメインのデータのみに基づいてトレーニングし、ソース・ツー・ターゲットドメインの変換に直接使用することができる。
FGDMは、Frechet Inception Distance(FID)、Peak Signal-to-Noise Ratio(PSNR)、および構造的類似性の測定値において、最先端手法(GANベース、VAEベース、拡散ベース)よりも優れていた
論文 参考訳(メタデータ) (2023-04-05T20:47:40Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
ソース・トゥ・ターゲット・モダリティ変換による画像の欠落の計算は、医用画像プロトコルの多様性を向上させることができる。
本稿では, 医用画像翻訳の性能向上のための逆拡散モデルであるSynDiffを提案する。
論文 参考訳(メタデータ) (2022-07-17T15:53:24Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。