論文の概要: "Global is Good, Local is Bad?": Understanding Brand Bias in LLMs
- arxiv url: http://arxiv.org/abs/2406.13997v2
- Date: Fri, 27 Sep 2024 05:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:22:29.832194
- Title: "Global is Good, Local is Bad?": Understanding Brand Bias in LLMs
- Title(参考訳): 「Global is Good, Local is Bad?」 : LLMにおけるブランドバイアスの理解
- Authors: Mahammed Kamruzzaman, Hieu Minh Nguyen, Gene Louis Kim,
- Abstract要約: 本研究では,LSMが異なるブランドに対して示すバイアスについて検討する。
世界のブランドを肯定的な属性で結び付け、高所得国の個人に豪華な贈り物を推薦するという観点からも、この分野には一貫した偏見のパターンがある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many recent studies have investigated social biases in LLMs but brand bias has received little attention. This research examines the biases exhibited by LLMs towards different brands, a significant concern given the widespread use of LLMs in affected use cases such as product recommendation and market analysis. Biased models may perpetuate societal inequalities, unfairly favoring established global brands while marginalizing local ones. Using a curated dataset across four brand categories, we probe the behavior of LLMs in this space. We find a consistent pattern of bias in this space -- both in terms of disproportionately associating global brands with positive attributes and disproportionately recommending luxury gifts for individuals in high-income countries. We also find LLMs are subject to country-of-origin effects which may boost local brand preference in LLM outputs in specific contexts.
- Abstract(参考訳): 近年の多くの研究では、LSMの社会的偏見について研究されているが、ブランド偏見はほとんど注目されていない。
本研究は, LLMの異なるブランドに対する偏見を考察し, 製品レコメンデーションや市場分析などのユースケースにおいて, LLMが広く利用されていることを考えると, 重要な懸念点である。
バイアスドモデルは社会的不平等を永続させ、確立したグローバルブランドを不公平に好んで、地元のブランドを疎外する可能性がある。
4つのブランドカテゴリにわたるキュレートされたデータセットを用いて、この分野におけるLCMの挙動を探索する。
世界のブランドを肯定的な属性で結び付け、高所得国の個人に豪華な贈り物を推薦するという観点からも、この分野には一貫した偏見のパターンがある。
また, LLM は, 特定の状況下での LLM 出力において, 地域ブランドの嗜好を高めるようなカントリー・オブ・オリジンの影響を受けていることも確認した。
関連論文リスト
- Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
論文 参考訳(メタデータ) (2024-08-20T23:54:26Z) - Fairness in Large Language Models in Three Hours [2.443957114877221]
このチュートリアルは、大規模言語モデルに関する文献の最近の進歩を体系的に概説する。
LLMにおける公平性の概念を考察し、バイアスを評価するための戦略と公正性を促進するために設計されたアルゴリズムを要約する。
論文 参考訳(メタデータ) (2024-08-02T03:44:14Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
大規模言語モデル(LLM)は、特定のタスクの自己フィードバックを通じてパフォーマンスを向上し、他のタスクを劣化させる。
我々は、LSMの自己バイアス(自称世代を好む傾向)を正式に定義する。
我々は、翻訳、制約付きテキスト生成、数学的推論の6つのLCMを解析する。
論文 参考訳(メタデータ) (2024-02-18T03:10:39Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Large Language Models are Geographically Biased [47.88767211956144]
我々は、地理のレンズを通して、我々の住む世界について、Large Language Models (LLM)が何を知っているかを研究する。
我々は,地理空間予測において,システム的誤りと定義する,様々な問題的地理的バイアスを示す。
論文 参考訳(メタデータ) (2024-02-05T02:32:09Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
本稿では, 年齢や美しさなど, 研究の少ない, 連続的な, 次元に沿ったバイアスについて検討する。
実験心理学において, LLMは, 特定の社会集団に対して, 肯定的, 否定的感情の偏見を広く抱いているか, あるいは「美しいものは良い」バイアスと類似しているかを問う。
論文 参考訳(メタデータ) (2023-09-16T07:07:04Z) - The Unequal Opportunities of Large Language Models: Revealing
Demographic Bias through Job Recommendations [5.898806397015801]
大規模言語モデル(LLM)における人口統計バイアスの分析と比較のための簡易な手法を提案する。
本稿では,ChatGPTとLLaMAの交差バイアスを計測し,本手法の有効性を示す。
両モデルとも、メキシコ労働者の低賃金雇用を一貫して示唆するなど、さまざまな人口統計学的アイデンティティに対する偏見を識別する。
論文 参考訳(メタデータ) (2023-08-03T21:12:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。