論文の概要: Exploring Layerwise Adversarial Robustness Through the Lens of t-SNE
- arxiv url: http://arxiv.org/abs/2406.14073v1
- Date: Thu, 20 Jun 2024 07:50:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 15:00:17.590872
- Title: Exploring Layerwise Adversarial Robustness Through the Lens of t-SNE
- Title(参考訳): t-SNEレンズによる層状対向性ロバストネスの探索
- Authors: Inês Valentim, Nuno Antunes, Nuno Lourenço,
- Abstract要約: ANN(Artificial Neural Networks)を騙して間違ったアウトプットを生成し、これらのモデルの脆弱性を浮き彫りにする。
画像分類ANNのロバスト性を評価する手法を提案する。
- 参考スコア(独自算出の注目度): 2.5834969279753275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial examples, designed to trick Artificial Neural Networks (ANNs) into producing wrong outputs, highlight vulnerabilities in these models. Exploring these weaknesses is crucial for developing defenses, and so, we propose a method to assess the adversarial robustness of image-classifying ANNs. The t-distributed Stochastic Neighbor Embedding (t-SNE) technique is used for visual inspection, and a metric, which compares the clean and perturbed embeddings, helps pinpoint weak spots in the layers. Analyzing two ANNs on CIFAR-10, one designed by humans and another via NeuroEvolution, we found that differences between clean and perturbed representations emerge early on, in the feature extraction layers, affecting subsequent classification. The findings with our metric are supported by the visual analysis of the t-SNE maps.
- Abstract(参考訳): ANN(Artificial Neural Networks)を騙して間違ったアウトプットを生成し、これらのモデルの脆弱性を強調する。
これらの弱点を探索することは防衛開発に不可欠であり,画像分類ANNの対角的ロバスト性を評価する手法を提案する。
t-distributed Stochastic Neighbor Embedding (t-SNE) 技術は視覚検査に使用され、クリーンで摂動的な埋め込みと比較するメトリクスは、レイヤ内の弱い箇所をピンポイントするのに役立つ。
CIFAR-10上の2つのANNをニューロエボリューションを用いて解析した結果、特徴抽出層において、クリーン表現と摂動表現の違いが早期に出現し、その後の分類に影響を及ぼすことが判明した。
本手法は, t-SNEマップの視覚的解析によって支援された。
関連論文リスト
- SCAAT: Improving Neural Network Interpretability via Saliency
Constrained Adaptive Adversarial Training [10.716021768803433]
サリエンシマップは、特徴属性のヒートマップを示す一般的な説明形式である。
本研究では,DNNの解釈能力を向上させるために,Saliency Constrained Adversarial Training (SCAAT) と呼ばれるモデルに依存しない学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-09T04:48:38Z) - Learning Invariant Representation via Contrastive Feature Alignment for
Clutter Robust SAR Target Recognition [10.993101256393679]
本稿ではコントラスト的特徴アライメント(Contrastive Feature Alignment, CFA)と呼ばれる手法を提案し, 頑健な認識のための不変表現を学習する。
CFAは、分類とCWMSEの損失を組み合わせて、モデルを共同で訓練する。
提案したCFAは、分類とCWMSE損失を併用してモデルをトレーニングし、不変対象表現の漸進的学習を可能にする。
論文 参考訳(メタデータ) (2023-04-04T12:35:33Z) - Threatening Patch Attacks on Object Detection in Optical Remote Sensing
Images [55.09446477517365]
自然画像における物体検出における高度なパッチアタック(PA)は、ディープニューラルネットワークに基づく手法における大きな安全性の脆弱性を指摘した。
我々は,TPAと呼ばれる視覚的品質の低下を伴わない,より危険度の高いPAを提案する。
我々の知る限りでは、これがO-RSIにおけるオブジェクト検出におけるPAの研究の最初の試みであり、この研究が読者にこのトピックの研究に興味を持たせることを願っている。
論文 参考訳(メタデータ) (2023-02-13T02:35:49Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
最終分類器の性能は、潜在空間に存在するデータ分離と、射影に存在する視覚的分離に依存すると論じる。
本研究は,ヒト腸管寄生虫の5つの現実的課題の画像データセットを1%の教師付きサンプルで分類し,その結果を実証する。
論文 参考訳(メタデータ) (2023-02-06T10:01:38Z) - An Adversarial Robustness Perspective on the Topology of Neural Networks [12.416690940269772]
ニューラルネットワーク(NN)トポロジが敵の強靭性に与える影響について検討する。
クリーンな入力からのグラフはハイウェイエッジを中心により集中しているのに対して、敵からのグラフはより拡散している。
論文 参考訳(メタデータ) (2022-11-04T18:00:53Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Salient Feature Extractor for Adversarial Defense on Deep Neural
Networks [2.993911699314388]
モデルによって元のデータセットから学習された非可燃性特徴による逆転例の観察を動機として,salient feature (SF) と trivial feature (TF) の概念を提案する。
敵の攻撃から守るために, サルエント特徴抽出器 (SFE) という新しい検出・防御手法を考案した。
論文 参考訳(メタデータ) (2021-05-14T12:56:06Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z) - Face Anti-Spoofing Via Disentangled Representation Learning [90.90512800361742]
顔認識システムのセキュリティには、顔の偽造が不可欠だ。
本稿では,画像から生意気な特徴やコンテンツの特徴を乱す顔のアンチ・スプーフィングの新たな視点を提案する。
論文 参考訳(メタデータ) (2020-08-19T03:54:23Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。