論文の概要: Let Guidelines Guide You: A Prescriptive Guideline-Centered Data Annotation Methodology
- arxiv url: http://arxiv.org/abs/2406.14099v2
- Date: Tue, 2 Jul 2024 15:38:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:49:41.237356
- Title: Let Guidelines Guide You: A Prescriptive Guideline-Centered Data Annotation Methodology
- Title(参考訳): Let Guidelines Guide You: A Prescriptive Guideline-Centered Data Annotation Methodology
- Authors: Federico Ruggeri, Eleonora Misino, Arianna Muti, Katerina Korre, Paolo Torroni, Alberto Barrón-Cedeño,
- Abstract要約: 本稿では,各データサンプルに関連付けられたガイドラインの報告に焦点をあてた新しいデータアノテーション手法であるガイドライン中心アノテーションプロセスを紹介する。
標準的な規範的アノテーションプロセスの主な3つの制限を特定し,ガイドライン中心の方法論がそれを克服する方法について述べる。
本稿では,複数のタスクにまたがるアノテートデータを,単一のアノテートプロセスのコストで再利用する方法について論じる。
- 参考スコア(独自算出の注目度): 14.48549682361803
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce the Guideline-Centered annotation process, a novel data annotation methodology focused on reporting the annotation guidelines associated with each data sample. We identify three main limitations of the standard prescriptive annotation process and describe how the Guideline-Centered methodology overcomes them by reducing the loss of information in the annotation process and ensuring adherence to guidelines. Additionally, we discuss how the Guideline-Centered enables the reuse of annotated data across multiple tasks at the cost of a single human-annotation process.
- Abstract(参考訳): 本稿では,各データサンプルに関連付けられたガイドラインの報告に焦点をあてた新しいデータアノテーション手法であるガイドライン中心アノテーションプロセスを紹介する。
標準的な規範的アノテーションプロセスの主な3つの制約を特定し,アノテーションプロセスにおける情報の損失を減らし,ガイドラインの遵守を確実にすることで,ガイドライン中心の方法論がそれらを克服する方法について述べる。
さらに,複数のタスクにまたがるアノテートデータを,単一のアノテートプロセスのコストで再利用する方法について論じる。
関連論文リスト
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
きめ細かい評価のための新しいアプローチを導入する。
テストキャプションを自動的に生成することで,既存のデータセットにアプローチを適用することができる。
きめ細かい評価実験は、このアプローチがきめ細かな違いを理解するモデルの能力を高めることを実証している。
論文 参考訳(メタデータ) (2024-10-16T09:42:29Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggetsはワンショット学習を使用して、広範なデータセットから高品質な命令データを選択する。
我々は,textscNuggets がキュレートした例の上位1%による命令チューニングが,データセット全体を用いた従来の手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-12-16T03:33:12Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
本稿では、このような補助データアノテーションの新しい代替手段として、入力テキストのペア間のタスク固有の嗜好について検討する。
本稿では、与えられた分類課題と補助的選好の両方を学ぶことの協調効果を享受できる、P2Cと呼ばれる新しいマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T04:04:47Z) - A comprehensive review of automatic text summarization techniques:
method, data, evaluation and coding [1.9241821314180376]
本稿では,ATS(Automatic Text Summarization)システムに関する文献レビューを行う。
我々は、引用に基づくアプローチを検討し、それらが要約を生成するメカニズムによって導かれるATSに対する多様なアプローチを示す。
また、要約タスクに利用可能なデータセットの広範なレビューと、要約の品質を評価する方法についても紹介する。
論文 参考訳(メタデータ) (2023-01-04T19:20:18Z) - Annotation Error Detection: Analyzing the Past and Present for a More
Coherent Future [63.99570204416711]
我々は、潜在的なアノテーションの誤りを検知するための18の手法を再実装し、9つの英語データセット上で評価する。
アノテーションエラー検出タスクの新しい形式化を含む一様評価設定を定義する。
私たちはデータセットと実装を,使いやすく,オープンソースのソフトウェアパッケージとしてリリースしています。
論文 参考訳(メタデータ) (2022-06-05T22:31:45Z) - Contrastive Learning from Demonstrations [0.0]
これらの表現は、ピック・アンド・プレイスを含むいくつかのロボット作業の模倣に適用可能であることを示す。
我々は、タスク関連情報を強化するためにコントラスト学習を適用することで、最近提案された自己教師付き学習アルゴリズムを最適化する。
論文 参考訳(メタデータ) (2022-01-30T13:36:07Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - Unsupervised Reference-Free Summary Quality Evaluation via Contrastive
Learning [66.30909748400023]
教師なしコントラスト学習により,参照要約を使わずに要約品質を評価することを提案する。
具体的には、BERTに基づく言語的品質と意味情報の両方をカバーする新しい指標を設計する。
ニューズルームとCNN/デイリーメールの実験では,新たな評価手法が参照サマリーを使わずに他の指標よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-05T05:04:14Z) - Guiding Graph Embeddings using Path-Ranking Methods for Error Detection
innoisy Knowledge Graphs [0.0]
この研究は、様々な主要なアプローチを示し、タスクのためのハイブリッドでモジュラーな方法論を提案する。
2つのベンチマークと1つの実世界のバイオメディカル・パブリッシング・データセットで異なる手法を比較し、アプローチの可能性を示している。
論文 参考訳(メタデータ) (2020-02-19T11:04:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。