論文の概要: Two-Stage Depth Enhanced Learning with Obstacle Map For Object Navigation
- arxiv url: http://arxiv.org/abs/2406.14103v1
- Date: Thu, 20 Jun 2024 08:35:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:40:46.113500
- Title: Two-Stage Depth Enhanced Learning with Obstacle Map For Object Navigation
- Title(参考訳): 物体ナビゲーションのための障害物マップを用いた2段階の深度学習
- Authors: Yanwei Zheng, Shaopu Feng, Bowen Huang, Changrui Li, Xiao Zhang, Dongxiao Yu,
- Abstract要約: 本稿では,RGBとトレーニングシーンの深度情報を用いて特徴抽出器の事前訓練を行い,ナビゲーション効率を向上する。
提案手法をAI2-ThorとRobothorで評価し,成功率と航法効率において最先端(SOTA)法を著しく上回っていることを示した。
- 参考スコア(独自算出の注目度): 11.667940255053582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task that requires an agent to navigate to a given object through only visual observation is called visual object navigation (VON). The main bottlenecks of VON are strategies exploration and prior knowledge exploitation. Traditional strategies exploration ignores the differences of searching and navigating stages, using the same reward in two stages, which reduces navigation performance and training efficiency. Our study enables the agent to explore larger area in searching stage and seek the optimal path in navigating stage, improving the success rate of navigation. Traditional prior knowledge exploitation focused on learning and utilizing object association, which ignored the depth and obstacle information in the environment. This paper uses the RGB and depth information of the training scene to pretrain the feature extractor, which improves navigation efficiency. The obstacle information is memorized by the agent during the navigation, reducing the probability of collision and deadlock. Depth, obstacle and other prior knowledge are concatenated and input into the policy network, and navigation actions are output under the training of two-stage rewards. We evaluated our method on AI2-Thor and RoboTHOR and demonstrated that it significantly outperforms state-of-the-art (SOTA) methods on success rate and navigation efficiency.
- Abstract(参考訳): エージェントが視覚的な観察のみを通して特定のオブジェクトにナビゲートする必要があるタスクは、ビジュアルオブジェクトナビゲーション(VON)と呼ばれる。
VONの主なボトルネックは、戦略探索と事前知識の活用である。
伝統的な戦略探索は、探索と航行の段階の違いを無視し、同じ報酬を2段階に分けて、航行性能と訓練効率を低下させる。
本研究は,探索段階の広い範囲を探索し,航行段階の最適経路を探索し,航法の成功率を向上させることを可能にした。
従来の知識の活用は、環境の奥行きや障害物情報を無視した、学習とオブジェクト関連の利用に重点を置いていた。
本稿では,RGBとトレーニングシーンの深度情報を用いて特徴抽出器の事前訓練を行い,ナビゲーション効率を向上する。
障害物情報は、ナビゲーション中にエージェントによって記憶され、衝突やデッドロックの確率が低下する。
深さ、障害物、その他の事前知識を連結し、ポリシーネットワークに入力し、2段階の報酬のトレーニングの下でナビゲーションアクションを出力する。
提案手法をAI2-ThorとRobothorで評価し,成功率と航法効率において最先端(SOTA)法を著しく上回っていることを示した。
関連論文リスト
- TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation [11.591176410027224]
本稿では,Large Language Models(LLM)に基づく視覚言語ナビゲーション(VLN)エージェントを提案する。
環境認識におけるLLMの欠点を補うための思考・相互作用・行動の枠組みを提案する。
また,本手法は教師付き学習手法よりも優れ,ゼロショットナビゲーションの有効性を強調した。
論文 参考訳(メタデータ) (2024-03-13T05:22:39Z) - Implicit Obstacle Map-driven Indoor Navigation Model for Robust Obstacle
Avoidance [16.57243997206754]
頑健な障害物回避のための暗黙的障害物マップ駆動屋内ナビゲーションフレームワークを提案する。
非ローカルなメモリアグリゲーションモジュールは、非ローカルネットワークを活用して、ターゲットセマンティクスとターゲットの向きの手がかりとの本質的な関係をモデル化するように設計されている。
論文 参考訳(メタデータ) (2023-08-24T15:10:28Z) - KERM: Knowledge Enhanced Reasoning for Vision-and-Language Navigation [61.08389704326803]
VLN(Vision-and-Language Navigation)は、実シーンにおける自然言語命令に続く遠隔地への移動を可能にするタスクである。
以前のアプローチのほとんどは、ナビゲート可能な候補を表現するために、機能全体やオブジェクト中心の機能を利用している。
本稿では,知識を活用したエージェントナビゲーション能力向上のための知識強化推論モデル(KERM)を提案する。
論文 参考訳(メタデータ) (2023-03-28T08:00:46Z) - Holistic Deep-Reinforcement-Learning-based Training of Autonomous
Navigation Systems [4.409836695738518]
Deep Reinforcement Learningは、地上車両の自律的なナビゲーションのための有望なアプローチとして登場した。
本稿では,ナビゲーションスタックの全要素を含む総合的な深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:52:15Z) - Explore before Moving: A Feasible Path Estimation and Memory Recalling
Framework for Embodied Navigation [117.26891277593205]
ナビゲーションに焦点をあて,経験や常識に欠ける既存のナビゲーションアルゴリズムの問題を解決する。
移動前に2回思考する能力に触発されて、不慣れな場面で目標を追求する実現可能な経路を考案し、パス推定とメモリリコールフレームワークと呼ばれる経路計画手法を提案する。
EmbodiedQAナビゲーションタスクにおけるPEMRの強力な実験結果を示す。
論文 参考訳(メタデータ) (2021-10-16T13:30:55Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
反応ナビゲーションと経路計画のソフトウェアを組み込んだ視覚補綴用拡張現実ナビゲーションシステムを提案する。
対象を地図上に配置し、対象の軌道を計画し、対象に示し、障害なく再計画する。
その結果,目標を達成するための時間と距離を減らし,障害物衝突の回数を大幅に減らし,航法性能の向上を図っている。
論文 参考訳(メタデータ) (2021-09-30T09:41:40Z) - Deep Learning for Embodied Vision Navigation: A Survey [108.13766213265069]
身体的視覚ナビゲーション」問題では、エージェントが3D環境をナビゲートする必要がある。
本稿では、総合的な文献調査を提供することで、視覚ナビゲーションの具体的分野における現在の研究の概要を確立することを試みる。
論文 参考訳(メタデータ) (2021-07-07T12:09:04Z) - MaAST: Map Attention with Semantic Transformersfor Efficient Visual
Navigation [4.127128889779478]
この作業は、自律エージェントの視覚ナビゲーションのための既存の学習ベースのソリューションよりも良く、または匹敵するパフォーマンスに重点を置いています。
本稿では,重要シーンのセマンティクスを意味的に理解し,トップダウンのエゴセントリックな地図表現にエンコードする手法を提案する。
本研究では,3次元再構成した屋内ポイントゴーア視覚ナビゲーション実験を行い,その効果を実証する。
論文 参考訳(メタデータ) (2021-03-21T12:01:23Z) - Language-guided Navigation via Cross-Modal Grounding and Alternate
Adversarial Learning [66.9937776799536]
新たなビジョン・アンド・ランゲージナビゲーション(VLN)問題は、見えない写真リアリスティック環境において、エージェントがターゲットの場所に向かうことを学習することを目的としている。
VLNの主な課題は、主に2つの側面から生じている: まず、エージェントは動的に変化する視覚環境に対応する言語命令の有意義な段落に出席する必要がある。
そこで本稿では,エージェントにテキストと視覚の対応性を追跡する機能を持たせるために,クロスモーダルグラウンドモジュールを提案する。
論文 参考訳(メタデータ) (2020-11-22T09:13:46Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
視覚言語ナビゲーション(VLN)は、エージェントがフォトリアリスティックな環境の中でナビゲーションの指示を行うためのタスクである。
VLNの重要な課題の1つは、曖昧な指示による不確実性を緩和し、環境の観察を不十分にすることで、堅牢なナビゲーションを行う方法である。
この研究は、人間のナビゲーション行動からインスピレーションを得て、よりインテリジェントなVLNポリシーのためのアクティブな情報収集能力を持つエージェントを提供する。
論文 参考訳(メタデータ) (2020-07-15T23:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。