論文の概要: Prediction and Reference Quality Adaptation for Learned Video Compression
- arxiv url: http://arxiv.org/abs/2406.14118v1
- Date: Thu, 20 Jun 2024 09:03:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:40:46.086670
- Title: Prediction and Reference Quality Adaptation for Learned Video Compression
- Title(参考訳): 学習ビデオ圧縮の予測と基準品質適応
- Authors: Xihua Sheng, Li Li, Dong Liu, Houqiang Li,
- Abstract要約: 本研究では,空間的およびチャネル的予測品質差の明確な識別を行うために,信頼度に基づく予測品質適応(PQA)モジュールを提案する。
また、参照品質適応(RQA)モジュールと関連する繰り返し学習戦略を提案し、様々な参照品質のための動的空間変化フィルタを提供する。
- 参考スコア(独自算出の注目度): 54.58691829087094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal prediction is one of the most important technologies for video compression. Various prediction coding modes are designed in traditional video codecs. Traditional video codecs will adaptively to decide the optimal coding mode according to the prediction quality and reference quality. Recently, learned video codecs have made great progress. However, they ignore the prediction and reference quality adaptation, which leads to incorrect utilization of temporal prediction and reconstruction error propagation. Therefore, in this paper, we first propose a confidence-based prediction quality adaptation (PQA) module to provide explicit discrimination for the spatial and channel-wise prediction quality difference. With this module, the prediction with low quality will be suppressed and that with high quality will be enhanced. The codec can adaptively decide which spatial or channel location of predictions to use. Then, we further propose a reference quality adaptation (RQA) module and an associated repeat-long training strategy to provide dynamic spatially variant filters for diverse reference qualities. With the filters, it is easier for our codec to achieve the target reconstruction quality according to reference qualities, thus reducing the propagation of reconstruction errors. Experimental results show that our codec obtains higher compression performance than the reference software of H.266/VVC and the previous state-of-the-art learned video codecs in both RGB and YUV420 colorspaces.
- Abstract(参考訳): 時間予測はビデオ圧縮において最も重要な技術の一つである。
様々な予測符号化モードは、従来のビデオコーデックで設計されている。
従来のビデオコーデックは、予測品質と基準品質に応じて最適な符号化モードを決定する。
近年,学習ビデオコーデックは大きな進歩を遂げている。
しかし、予測や基準品質適応は無視され、時間的予測の誤利用や再構成エラーの伝播につながる。
そこで本稿では,空間的およびチャネル的に予測される品質差を明確化するために,信頼性に基づく予測品質適応(PQA)モジュールを提案する。
このモジュールでは、低品質の予測が抑制され、高品質の予測が強化される。
コーデックは、どの空間的位置またはチャネル的位置を使用するかを適応的に決定することができる。
さらに、参照品質適応(RQA)モジュールと関連する反復訓練戦略を提案し、様々な参照品質のための動的空間変動フィルタを提供する。
フィルタを用いることで、基準品質に応じて、コーデックが目標再構成品質を達成することがより容易になり、再構成エラーの伝播が軽減される。
実験結果から,本コーデックは,RGBおよびYUV420色空間において,H.266/VVCの参照ソフトウェアや,従来の最先端の学習ビデオコーデックよりも高い圧縮性能が得られることがわかった。
関連論文リスト
- Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - Video Compression with Arbitrary Rescaling Network [8.489428003916622]
符号化前のビデオリサイズのためのレート誘導任意再スケーリングネットワーク(RARN)を提案する。
軽量RARN構造は、FHD(1080p)コンテンツをリアルタイム(91 FPS)で処理し、かなりのレート低下を得ることができる。
論文 参考訳(メタデータ) (2023-06-07T07:15:18Z) - Perceptual Quality Assessment of Face Video Compression: A Benchmark and
An Effective Method [69.868145936998]
生成的符号化アプローチは、合理的な速度歪曲トレードオフを持つ有望な代替手段として認識されている。
従来のハイブリッドコーディングフレームワークから生成モデルまで、空間的・時間的領域における歪みの多様さは、圧縮顔画像品質評価(VQA)における大きな課題を提示する。
大規模圧縮顔画像品質評価(CFVQA)データベースを導入し,顔ビデオの知覚的品質と多角化圧縮歪みを体系的に理解するための最初の試みである。
論文 参考訳(メタデータ) (2023-04-14T11:26:09Z) - Sandwiched Video Compression: Efficiently Extending the Reach of
Standard Codecs with Neural Wrappers [11.968545394054816]
本稿では,標準的なビデオにニューラルネットワークをラップするビデオ圧縮システムを提案する。
ネットワークは、速度歪み損失関数を最適化するために共同で訓練される。
HEVCと同等品質で30%の改善が見られた。
論文 参考訳(メタデータ) (2023-03-20T22:03:44Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Perceptual Learned Video Compression with Recurrent Conditional GAN [158.0726042755]
本稿では, PVC (Perceptual Learned Video Compression) アプローチを提案する。
PLVCは低ビットレートで映像を知覚品質に圧縮することを学ぶ。
ユーザスタディでは、最新の学習ビデオ圧縮手法と比較して、PLVCの優れた知覚性能をさらに検証している。
論文 参考訳(メタデータ) (2021-09-07T13:36:57Z) - Perceptually-inspired super-resolution of compressed videos [18.72040343193715]
空間分解能適応は、符号化効率を高めるためにしばしばビデオ圧縮に使用される技法である。
近年の研究では、畳み込みニューラルネットワーク(CNN)に基づく高度な超解像法を用いて、再構築品質をさらに向上させている。
本稿では,CNNモデルを用いた圧縮映像の空間的アップサンプリングのために,知覚にインスパイアされた超解像法(M-SRGAN)を提案する。
論文 参考訳(メタデータ) (2021-06-15T13:50:24Z) - Variable Rate Video Compression using a Hybrid Recurrent Convolutional
Learning Framework [1.9290392443571382]
本稿では,予測自動符号化の概念に基づくハイブリッドビデオ圧縮フレームワークであるPredEncoderを提案する。
可変レートブロック符号化方式が論文で提案され,ビットレート比が著しく向上した。
論文 参考訳(メタデータ) (2020-04-08T20:49:25Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。