論文の概要: Video Compression with Arbitrary Rescaling Network
- arxiv url: http://arxiv.org/abs/2306.04202v1
- Date: Wed, 7 Jun 2023 07:15:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 15:48:04.053113
- Title: Video Compression with Arbitrary Rescaling Network
- Title(参考訳): 任意再スケーリングネットワークによるビデオ圧縮
- Authors: Mengxi Guo, Shijie Zhao, Hao Jiang, Junlin Li and Li Zhang
- Abstract要約: 符号化前のビデオリサイズのためのレート誘導任意再スケーリングネットワーク(RARN)を提案する。
軽量RARN構造は、FHD(1080p)コンテンツをリアルタイム(91 FPS)で処理し、かなりのレート低下を得ることができる。
- 参考スコア(独自算出の注目度): 8.489428003916622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most video platforms provide video streaming services with different
qualities, and the quality of the services is usually adjusted by the
resolution of the videos. So high-resolution videos need to be downsampled for
compression. In order to solve the problem of video coding at different
resolutions, we propose a rate-guided arbitrary rescaling network (RARN) for
video resizing before encoding. To help the RARN be compatible with standard
codecs and generate compression-friendly results, an iteratively optimized
transformer-based virtual codec (TVC) is introduced to simulate the key
components of video encoding and perform bitrate estimation. By iteratively
training the TVC and the RARN, we achieved 5%-29% BD-Rate reduction anchored by
linear interpolation under different encoding configurations and resolutions,
exceeding the previous methods on most test videos. Furthermore, the
lightweight RARN structure can process FHD (1080p) content at real-time speed
(91 FPS) and obtain a considerable rate reduction.
- Abstract(参考訳): ほとんどのビデオプラットフォームは、異なる品質の動画ストリーミングサービスを提供しており、サービスの質は通常、ビデオの解像度によって調整される。
そのため、圧縮のために高解像度の動画をダウンサンプリングする必要がある。
解像度の異なるビデオ符号化の問題を解決するために、符号化前のビデオリサイズのためのレート誘導任意再スケーリングネットワーク(RARN)を提案する。
rarnを標準コーデックと互換性を持たせ、圧縮フレンドリな結果を生成するために、ビデオエンコーディングのキーコンポーネントをシミュレートしビットレート推定を行うために、反復最適化トランスベース仮想コーデック(tvc)を導入する。
本研究は,TVCとRARNを反復的にトレーニングすることにより,多くのテストビデオにおいて,従来の手法を上回り,線形補間により5%-29%のBD-Rate低減を実現した。
さらに、軽量ラーン構造は、fhd(1080p)コンテンツをリアルタイム速度(91fps)で処理でき、かなりのレート低減が得られる。
関連論文リスト
- Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
低解像度表現学習に焦点を当てた学習ビデオ圧縮のための効率最適化フレームワークを提案する。
提案手法は,H.266参照ソフトウェアVTMの低遅延P構成と同等の性能を実現する。
論文 参考訳(メタデータ) (2024-07-23T12:02:57Z) - Standard compliant video coding using low complexity, switchable neural wrappers [8.149130379436759]
標準互換性、高性能、低復号化の複雑さを特徴とする新しいフレームワークを提案する。
私たちは、標準的なビデオをラップして、異なる解像度でビデオをエンコードする、共同最適化されたニューラルプリプロセッサとポストプロセッサのセットを使用します。
我々は、異なるアップサンプリング比を処理できる低複雑性のニューラルポストプロセッサアーキテクチャを設計する。
論文 参考訳(メタデータ) (2024-07-10T06:36:45Z) - Prediction and Reference Quality Adaptation for Learned Video Compression [54.58691829087094]
本研究では,空間的およびチャネル的予測品質差の明確な識別を行うために,信頼度に基づく予測品質適応(PQA)モジュールを提案する。
また、参照品質適応(RQA)モジュールと関連する繰り返し学習戦略を提案し、様々な参照品質のための動的空間変化フィルタを提供する。
論文 参考訳(メタデータ) (2024-06-20T09:03:26Z) - Deep Learning-Based Real-Time Quality Control of Standard Video
Compression for Live Streaming [31.285983939625098]
リアルタイム深層学習に基づくH.264コントローラを提案する。
最小遅延でビデオチャンクの内容に基づいて最適なエンコーダパラメータを推定する。
平均帯域使用量の最大2.5倍の改善を実現している。
論文 参考訳(メタデータ) (2023-11-21T18:28:35Z) - Sandwiched Video Compression: Efficiently Extending the Reach of
Standard Codecs with Neural Wrappers [11.968545394054816]
本稿では,標準的なビデオにニューラルネットワークをラップするビデオ圧縮システムを提案する。
ネットワークは、速度歪み損失関数を最適化するために共同で訓練される。
HEVCと同等品質で30%の改善が見られた。
論文 参考訳(メタデータ) (2023-03-20T22:03:44Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
圧縮ビデオの細部を復元する深層学習アーキテクチャを開発した。
これにより,従来の圧縮補正法と比較して復元精度が向上することを示す。
我々は、ビットストリームで容易に利用できる量子化データに対して、我々のモデルを条件付けする。
論文 参考訳(メタデータ) (2022-01-31T18:56:04Z) - COMISR: Compression-Informed Video Super-Resolution [76.94152284740858]
ウェブやモバイルデバイスのほとんどのビデオは圧縮され、帯域幅が制限されると圧縮は厳しい。
圧縮によるアーティファクトを導入せずに高解像度コンテンツを復元する圧縮インフォームドビデオ超解像モデルを提案する。
論文 参考訳(メタデータ) (2021-05-04T01:24:44Z) - Efficient Video Compression via Content-Adaptive Super-Resolution [11.6624528293976]
ビデオ圧縮はインターネットビデオ配信の重要なコンポーネントである。
近年の研究では、ディープラーニング技術が人間のアルゴリズムに匹敵する、あるいは優れていることが示されている。
本稿では,最近の深層学習に基づくビデオ圧縮方式を補強する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-04-06T07:01:06Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
本稿では,階層型ビデオ圧縮(HLVC)手法を提案する。
我々のHLVCアプローチでは、エンコーダ側とデコーダ側の低品質フレームの圧縮と強化を容易にするため、階層的品質は符号化効率の恩恵を受ける。
論文 参考訳(メタデータ) (2020-03-04T09:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。