論文の概要: A Data-Driven Guided Decoding Mechanism for Diagnostic Captioning
- arxiv url: http://arxiv.org/abs/2406.14164v1
- Date: Thu, 20 Jun 2024 10:08:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:21:16.578622
- Title: A Data-Driven Guided Decoding Mechanism for Diagnostic Captioning
- Title(参考訳): 診断キャプションのためのデータ駆動型ガイドデコーディング機構
- Authors: Panagiotis Kaliosis, John Pavlopoulos, Foivos Charalampakos, Georgios Moschovis, Ion Androutsopoulos,
- Abstract要約: 診断用キャプション(DC)は、患者の1つ以上の医療画像から診断用テキストを自動的に生成する。
本稿では,診断テキスト生成プロセスのビームサーチに医療情報を組み込んだデータ駆動型ガイドデコーディング手法を提案する。
提案手法は,CNNエンコーダを用いた汎用画像-テキストシステムから,事前学習された大規模言語モデルまで,4つのDCシステムを用いて2つの医療データセット上で評価する。
- 参考スコア(独自算出の注目度): 11.817595076396925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnostic Captioning (DC) automatically generates a diagnostic text from one or more medical images (e.g., X-rays, MRIs) of a patient. Treated as a draft, the generated text may assist clinicians, by providing an initial estimation of the patient's condition, speeding up and helping safeguard the diagnostic process. The accuracy of a diagnostic text, however, strongly depends on how well the key medical conditions depicted in the images are expressed. We propose a new data-driven guided decoding method that incorporates medical information, in the form of existing tags capturing key conditions of the image(s), into the beam search of the diagnostic text generation process. We evaluate the proposed method on two medical datasets using four DC systems that range from generic image-to-text systems with CNN encoders and RNN decoders to pre-trained Large Language Models. The latter can also be used in few- and zero-shot learning scenarios. In most cases, the proposed mechanism improves performance with respect to all evaluation measures. We provide an open-source implementation of the proposed method at https://github.com/nlpaueb/dmmcs.
- Abstract(参考訳): 診断用キャプション(DC)は、患者の1つ以上の医療画像(例えば、X線、MRI)から診断用テキストを自動的に生成する。
作成したテキストは、患者の状態を初期推定し、スピードアップし、診断プロセスの保護を支援することによって、臨床医を支援することができる。
しかし、診断テキストの精度は、画像に表される重要な医学的条件がどれだけうまく表現されているかに大きく依存する。
本稿では、診断テキスト生成プロセスのビームサーチにおいて、画像のキー条件をキャプチャする既存のタグの形で、医療情報を組み込んだ新しいデータ駆動型ガイドデコーディング手法を提案する。
提案手法は,CNNエンコーダとRNNデコーダを用いた汎用画像-テキストシステムから,事前訓練された大規模言語モデルまで,4つのDCシステムを用いて2つの医療データセット上で評価する。
後者は、少数およびゼロショットの学習シナリオでも使用することができる。
ほとんどの場合、提案手法は全ての評価基準に対して性能を向上させる。
本稿では,提案手法のオープンソース実装について,https://github.com/nlpaueb/dmmcsで紹介する。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - A ChatGPT Aided Explainable Framework for Zero-Shot Medical Image
Diagnosis [15.13309228766603]
診断にChatGPTを付加した新しいCLIPベースのゼロショット画像分類フレームワークを提案する。
鍵となるアイデアは、大きな言語モデル(LLM)をカテゴリ名でクエリして、追加のキューと知識を自動的に生成することだ。
1つのプライベートデータセットと4つのパブリックデータセットの広範な結果と詳細な分析は、トレーニング不要なゼロショット診断パイプラインの有効性と説明可能性を示している。
論文 参考訳(メタデータ) (2023-07-05T01:45:19Z) - Multimorbidity Content-Based Medical Image Retrieval Using Proxies [37.47987844057842]
本稿では、分類とコンテンツに基づく画像検索の両方に使用できる新しい多ラベルメトリック学習法を提案する。
本モデルは,疾患の存在を予測し,これらの予測の証拠を提供することによって診断を支援することができる。
分類とコンテンツに基づく画像検索へのアプローチの有効性を2つのマルチモービディティー・ラジオロジー・データセットで実証した。
論文 参考訳(メタデータ) (2022-11-22T11:23:53Z) - Morphology-Aware Interactive Keypoint Estimation [32.52024944963992]
医学的画像に基づく診断は、しばしば解剖学的キーポイントのマニュアルアノテーションを含む。
本稿では,ユーザインタラクションシステムを通じて解剖学的キーポイントを自動的に検出し,精査する,新しいディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-15T09:27:14Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Explaining Predictions of Deep Neural Classifier via Activation Analysis [0.11470070927586014]
本稿では,畳み込みニューラルネットワーク(CNN)に基づく深層学習システムを実行する人間専門家に対して,意思決定プロセスの説明と支援を行う新しいアプローチを提案する。
以上の結果から,本手法は既存のアトラスから最も類似した予測を識別できる別個の予測戦略を検出することができることが示された。
論文 参考訳(メタデータ) (2020-12-03T20:36:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。