Comment on "Covariant quantum field theory of tachyons"
- URL: http://arxiv.org/abs/2406.14225v2
- Date: Mon, 8 Jul 2024 13:20:38 GMT
- Title: Comment on "Covariant quantum field theory of tachyons"
- Authors: Krzysztof Jodłowski,
- Abstract summary: We show that the proposed Feynman propa leads to unitarity violation in the 1-loop mass renormalization of an ordinary particle.
Our analysis indicates that quantum tachyon field does not describe a physical on-shell particle with negative mass squared.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Paczos et al. (Phys. Rev. D 109 (2024)) proposed a covariant quantum field theory for free and interacting tachyon fields. We show that the proposed Feynman propagator leads to unitarity violation in the 1-loop mass renormalization of an ordinary particle it interacts with, proper asymptotic (in/out) tachyon states do not exist, and the proposed S-matrix describing interactions of tachyons and subluminal matter is ill-defined. Since tachyons behave as bosons, interacting tachyons may also self-interact, e.g., any interaction with ordinary matter generates such terms. As a result, the physical vacuum, instead of being at the origin of the potential, may correspond to the proper minimum of the tachyon potential, or such state does not exist at all. Our analysis indicates that quantum tachyon field does not describe a physical on-shell particle with negative mass squared.
Related papers
- Bohmian Mechanics fails to compute multi-time correlations [0.0]
Bohmian mechanics is a realistic, non-local theory of classical particle trajectories.
We set up a spatial version of the GHZ system with qubits realised as positional observables.
arXiv Detail & Related papers (2025-02-20T11:03:38Z) - Persistent non-Gaussian correlations in out-of-equilibrium Rydberg atom arrays [0.0]
We present a mechanism by which an initial state of a Rydberg atom array can retain persistent non-Gaussian correlations following a global quench.
These long-lived non-Gaussian states may have practical applications as quantum memories or stable resources for quantum-information protocols.
arXiv Detail & Related papers (2023-06-21T12:07:45Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum Scars in Quantum Field Theory [0.30458514384586405]
We develop the theory of quantum scars for quantum fields.
We find that an unstable variant of Q-balls, called Q-clouds, induce quantum scars.
Some technical contributions of our work include methods for characterizing moduli spaces of periodic orbits in field theories.
arXiv Detail & Related papers (2022-12-03T15:43:36Z) - Topological extension including quantum jump [4.681851642601744]
We study the Su-Schrieffer-Heeger model with collective loss and gain from a topological perspective.
Our study provides a qualitative analysis of the impact of quantum jumping terms and reveals their unique role in quantum systems.
arXiv Detail & Related papers (2022-11-08T13:26:57Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Non-Abelian symmetry can increase entanglement entropy [62.997667081978825]
We quantify the effects of charges' noncommutation on Page curves.
We show analytically and numerically that the noncommuting-charge case has more entanglement.
arXiv Detail & Related papers (2022-09-28T18:00:00Z) - Fractional Quantum Zeno Effect Emerging from Non-Hermitian Physics [12.706932285002544]
We predict quantum non-Hermitian phenomena: the fractional quantum Zeno (FQZ) effect and FQZ-induced photon antibunching.
We find FQZ-induced strong photon antibunching in the steady state of a driven emitter even for weak nonlinearities.
Remarkably, we identify that the sub-Poissonian quantum statistics of photons, which has no classical analogs, stems here from the key role of non-Hermiticity.
arXiv Detail & Related papers (2022-07-07T17:41:24Z) - Test of Causal Non-Linear Quantum Mechanics by Ramsey Interferometry on
the Vibrational Mode of a Trapped Ion [0.0]
Causal non-linear theories have the unavoidable feature that their quantum effects are dramatically sensitive to the full physical spread of the quantum state of the system.
We set a stringent limit of $5.4times 10-12$ on the magnitude of the unitless scaling factor $tildeepsilon_gamma$ for the predicted causal, non-linear perturbation.
arXiv Detail & Related papers (2022-06-26T21:23:16Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - On the Interpretation of Quantum Indistinguishability : a No-Go Theorem [0.0]
Physicists are yet to reach a consensus on the interpretation of a quantum wavefunction.
We show that quantum mechanical prediction of maximal violation of Mermin inequality is incompatible with all ontological interpretations for quantum theory.
arXiv Detail & Related papers (2022-04-20T18:39:25Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Comment on: "Quantum aspects of the Lorentz symmetry violation on an
electron in a nonuniform electric field'' Eur. Phys. J. Plus (2020) 135:623 [0.0]
We analyze recent results concerning the hypothesis of a privileged direction in the space-time that is made by considering a background of the Lorentz symmetry violation determined by a fixed spacelike vector field.
We show that the conclusions derived by the authors are an artifact of the truncation of the Frobenius series by means of the tree-term recurrence relation for the expansion coefficients.
arXiv Detail & Related papers (2021-01-04T13:47:52Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - The Non-Hermitian quantum mechanics and its canonical structure [7.784991832712813]
The non-Hermitian Schr"odinger equation is re-expressed generally in the form of Hamilton's canonical equation without any approximation.
The conventional difficulties in non-Hermitian quantum mechanics are totally overcome by the reformulation.
arXiv Detail & Related papers (2020-05-21T05:52:53Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - A criterion to characterize interacting theories in the Wightman
framework [0.0]
We propose a criterion to characterize interacting theories in a suitable Wightman framework of quantum field theories.
We conjecture that it characterizes either unstable (composite) particles or the charge-carrying particles, which become infraparticles in the presence of massless particles.
arXiv Detail & Related papers (2020-02-20T09:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.