NAC-QFL: Noise Aware Clustered Quantum Federated Learning
- URL: http://arxiv.org/abs/2406.14236v1
- Date: Thu, 20 Jun 2024 12:00:17 GMT
- Title: NAC-QFL: Noise Aware Clustered Quantum Federated Learning
- Authors: Himanshu Sahu, Hari Prabhat Gupta,
- Abstract summary: This paper introduces a noise-aware clustered quantum federated learning system.
It addresses noise mitigation, limited quantum device capacity, and high quantum communication costs.
It enhances distributed QML performance and reduces communication costs.
- Score: 9.752814421987246
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in quantum computing, alongside successful deployments of quantum communication, hold promises for revolutionizing mobile networks. While Quantum Machine Learning (QML) presents opportunities, it contends with challenges like noise in quantum devices and scalability. Furthermore, the high cost of quantum communication constrains the practical application of QML in real-world scenarios. This paper introduces a noise-aware clustered quantum federated learning system that addresses noise mitigation, limited quantum device capacity, and high quantum communication costs in distributed QML. It employs noise modelling and clustering to select devices with minimal noise and distribute QML tasks efficiently. Using circuit partitioning to deploy smaller models on low-noise devices and aggregating similar devices, the system enhances distributed QML performance and reduces communication costs. Leveraging circuit cutting, QML techniques are more effective for smaller circuit sizes and fidelity. We conduct experimental evaluations to assess the performance of the proposed system. Additionally, we introduce a noisy dataset for QML to demonstrate the impact of noise on proposed accuracy.
Related papers
- Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits [10.073911279652918]
We study the relationship between the quantum noise and the diffusion model.
We propose a novel diffusion-inspired learning approach to mitigate the quantum noise in the PQCs.
arXiv Detail & Related papers (2024-06-02T19:35:38Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
This paper investigates the scalability and noise resilience of quantum generative learning applications.
We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms.
We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
arXiv Detail & Related papers (2024-03-27T15:05:55Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Generative machine learning with tensor networks: benchmarks on
near-term quantum computers [0.0]
We explore quantum-assisted machine learning (QAML) on NISQ devices through the perspective of tensor networks (TNs)
In particular, we lay out a framework for designing and optimizing TN-based QAML models using classical techniques, and then compiling these models to be run on quantum hardware.
We present an exactly solvable benchmark problem for assessing the performance of MPS QAML models, and also present an application for the canonical MNIST handwritten digit dataset.
arXiv Detail & Related papers (2020-10-07T20:33:34Z) - Machine learning of noise-resilient quantum circuits [0.8258451067861933]
Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum computers.
We present a general framework based on machine learning for reducing the impact of quantum hardware noise on quantum circuits.
Our method, called noise-aware circuit learning (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum states, or estimate an observable of a many-qubit state.
arXiv Detail & Related papers (2020-07-02T15:43:32Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.