論文の概要: Revisiting Modularity Maximization for Graph Clustering: A Contrastive Learning Perspective
- arxiv url: http://arxiv.org/abs/2406.14288v1
- Date: Thu, 20 Jun 2024 13:14:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:42:16.067150
- Title: Revisiting Modularity Maximization for Graph Clustering: A Contrastive Learning Perspective
- Title(参考訳): グラフクラスタリングにおけるモジュール性最大化の再検討:対照的な学習の視点から
- Authors: Yunfei Liu, Jintang Li, Yuehe Chen, Ruofan Wu, Ericbk Wang, Jing Zhou, Sheng Tian, Shuheng Shen, Xing Fu, Changhua Meng, Weiqiang Wang, Liang Chen,
- Abstract要約: コントラスト型プリテキストタスクとして考案されたモジュラリティを活用する,コミュニティ対応のグラフクラスタリングフレームワークMAGIを提案する。
モジュラリティとグラフの対照的な学習との間には,正の例と負の例がモジュール性によって自然に定義される,強い関連性を示す。
本研究は,コミュニティ対応のグラフクラスタリングフレームワークであるMAGIを提案する。
- 参考スコア(独自算出の注目度): 44.4638436277021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph clustering, a fundamental and challenging task in graph mining, aims to classify nodes in a graph into several disjoint clusters. In recent years, graph contrastive learning (GCL) has emerged as a dominant line of research in graph clustering and advances the new state-of-the-art. However, GCL-based methods heavily rely on graph augmentations and contrastive schemes, which may potentially introduce challenges such as semantic drift and scalability issues. Another promising line of research involves the adoption of modularity maximization, a popular and effective measure for community detection, as the guiding principle for clustering tasks. Despite the recent progress, the underlying mechanism of modularity maximization is still not well understood. In this work, we dig into the hidden success of modularity maximization for graph clustering. Our analysis reveals the strong connections between modularity maximization and graph contrastive learning, where positive and negative examples are naturally defined by modularity. In light of our results, we propose a community-aware graph clustering framework, coined MAGI, which leverages modularity maximization as a contrastive pretext task to effectively uncover the underlying information of communities in graphs, while avoiding the problem of semantic drift. Extensive experiments on multiple graph datasets verify the effectiveness of MAGI in terms of scalability and clustering performance compared to state-of-the-art graph clustering methods. Notably, MAGI easily scales a sufficiently large graph with 100M nodes while outperforming strong baselines.
- Abstract(参考訳): グラフクラスタリングは、グラフマイニングの基本的な課題であり、グラフ内のノードをいくつかの非結合クラスタに分類することを目的としている。
近年,グラフクラスタリングの研究の主流としてグラフコントラスト学習(GCL)が登場し,新たな最先端技術が進歩している。
しかし、GCLベースの手法はグラフの拡張やコントラスト的なスキームに大きく依存しており、セマンティックドリフトや拡張性の問題といった問題を引き起こす可能性がある。
もうひとつの有望な研究は、クラスタリングタスクの指針として、コミュニティ検出の一般的かつ効果的な手段であるモジュラリティ最大化の採用である。
最近の進歩にもかかわらず、モジュラリティの最大化の基盤となるメカニズムはまだよく理解されていない。
本研究では,グラフクラスタリングにおけるモジュラリティ最大化の隠れた成功を掘り下げる。
本分析により,モジュール性最大化とグラフ対照的学習の強い関係が明らかとなり,正の例と負の例がモジュール性によって自然に定義される。
本研究は,コミュニティに意識したグラフクラスタリングフレームワークであるMAGIを提案する。これは,グラフ内のコミュニティの基盤となる情報を効果的に発見し,セマンティックドリフトの問題を回避しつつ,モジュラリティの最大化をコントラスト的なプレテキストタスクとして活用する。
複数のグラフデータセットに対する大規模な実験は、最先端のグラフクラスタリング手法と比較してスケーラビリティとクラスタリング性能の観点からMAGIの有効性を検証する。
特に、MAGIは、強いベースラインを上回りながら、1億のノードで十分に大きなグラフを簡単にスケールする。
関連論文リスト
- A Dual Adaptive Assignment Approach for Robust Graph-Based Clustering [18.614842530666834]
我々は、ロバストグラフベースクラスタリング(RDSA)のためのDual Adaptive Assignment Approachと呼ばれる新しいフレームワークを導入する。
RDSAは3つの主要なコンポーネントから構成される: (i) グラフのトポロジ的特徴とノード属性を効果的に統合するノード埋め込みモジュール、 (ii) ノード割り当てに親和性行列を利用することでグラフモジュラリティを改善する構造ベースのソフトアサインモジュール、 (iii) コミュニティランドマークを識別し、モデルの堅牢性を高めるためにノード割り当てを洗練させるノードベースのソフトアサインモジュール。
この結果から,RDSAはクラスタリングの有効性やロバスト性,適応性など,グラフの種類によって堅牢なクラスタリングを実現していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-29T05:18:34Z) - Modularity aided consistent attributed graph clustering via coarsening [6.522020196906943]
グラフクラスタリングは、属性付きグラフを分割し、コミュニティを検出するための重要な教師なし学習手法である。
本稿では,ブロックの最大化最小化手法を用いて,対数行列,滑らか性,モジュラリティを組み込んだ損失関数を提案する。
我々のアルゴリズムはグラフニューラルネットワーク(GNN)と変分グラフオートエンコーダ(VGAE)をシームレスに統合し、拡張ノードの特徴を学習し、例外的なクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2024-07-09T10:42:19Z) - DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
本稿では,グラフニューラルネットワークを用いてモジュラリティの目的を最適化し,グラフサイズと線形にスケールする新しい手法DGClusterを提案する。
私たちはDGClusterを、さまざまなサイズの実世界のデータセットで、複数の一般的なクラスタ品質メトリクスで広範囲にテストしています。
われわれの手法は最先端の手法よりも一貫して優れており、ほぼすべての設定で顕著な性能向上を示している。
論文 参考訳(メタデータ) (2023-12-20T01:43:55Z) - M3C: A Framework towards Convergent, Flexible, and Unsupervised Learning
of Mixture Graph Matching and Clustering [57.947071423091415]
本稿では,理論収束を保証する学習自由度アルゴリズムであるM3Cを提案する。
我々は、新しいエッジワイド親和性学習と擬似ラベル選択を組み込んだ教師なしモデルUM3Cを開発した。
提案手法は,最先端のグラフマッチングと混合グラフマッチングとクラスタリングの手法を精度と効率の両面で優れている。
論文 参考訳(メタデータ) (2023-10-27T19:40:34Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
グラフ構造学習は、欠落したリンクを追加し、スプリアス接続を取り除くことで、入力グラフの精細化を可能にする。
グラフ構造学習におけるこれまでの取り組みは、主に教師付き設定を中心に行われてきた。
グラフクラスタリングのためのtextbfhomophily-enhanced structure textbflearning という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-10T02:53:30Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - Deep Graph Clustering via Mutual Information Maximization and Mixture
Model [6.488575826304023]
クラスタリングに親しみやすいノード埋め込みを学習するための対照的な学習フレームワークを導入する。
実世界のデータセットを用いた実験により,コミュニティ検出における本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-10T21:03:55Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。