論文の概要: Active Diffusion Subsampling
- arxiv url: http://arxiv.org/abs/2406.14388v1
- Date: Thu, 20 Jun 2024 15:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:12:50.660949
- Title: Active Diffusion Subsampling
- Title(参考訳): アクティブ拡散サブサンプリング
- Authors: Oisin Nolan, Tristan S. W. Stevens, Wessel L. van Nierop, Ruud J. G. van Sloun,
- Abstract要約: 最大エントロピーサンプリングでは、最も高いエントロピーを持つと思われる測定位置を選択し、約$x$の不確実性を最小化する。
近年,拡散モデルにより誘導拡散を用いた高次元信号の高品質後部サンプルが得られた。
誘導拡散を用いたアクティブ・ディフュージョン・サブサンプリング法であるアクティブ・ディフュージョン・サブサンプリング(ADS)を提案する。
- 参考スコア(独自算出の注目度): 15.028061496012924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subsampling is commonly used to mitigate costs associated with data acquisition, such as time or energy requirements, motivating the development of algorithms for estimating the fully-sampled signal of interest $x$ from partially observed measurements $y$. In maximum-entropy sampling, one selects measurement locations that are expected to have the highest entropy, so as to minimize uncertainty about $x$. This approach relies on an accurate model of the posterior distribution over future measurements, given the measurements observed so far. Recently, diffusion models have been shown to produce high-quality posterior samples of high-dimensional signals using guided diffusion. In this work, we propose Active Diffusion Subsampling (ADS), a method for performing active subsampling using guided diffusion in which the model tracks a distribution of beliefs over the true state of $x$ throughout the reverse diffusion process, progressively decreasing its uncertainty by choosing to acquire measurements with maximum expected entropy, and ultimately generating the posterior distribution $p(x | y)$. ADS can be applied using pre-trained diffusion models for any subsampling rate, and does not require task-specific retraining - just the specification of a measurement model. Furthermore, the maximum entropy sampling policy employed by ADS is interpretable, enhancing transparency relative to existing methods using black-box policies. Experimentally, we show that ADS outperforms fixed sampling strategies, and study an application of ADS in Magnetic Resonance Imaging acceleration using the fastMRI dataset, finding that ADS performs competitively with supervised methods. Code available at https://active-diffusion-subsampling.github.io/.
- Abstract(参考訳): サブサンプリングは、時間やエネルギー要求などのデータ取得に伴うコストを軽減し、部分的に測定された$y$から、完全にサンプリングされた信号のx$を推定するアルゴリズムの開発を動機付けるのが一般的である。
最大エントロピーサンプリングでは、最も高いエントロピーを持つと思われる測定位置を選択し、約$x$の不確実性を最小化する。
このアプローチは、これまでの観測結果から、将来の測定よりも後方分布の正確なモデルに依存している。
近年,拡散モデルにより誘導拡散を用いた高次元信号の高品質後部サンプルが得られた。
本研究では, モデルが逆拡散過程を通じて$x$の真状態上の信念の分布を追跡し, 最大エントロピーで測定値を取得することを選択し, 最終的に後続分布$p(x | y)$を生成するような, アクティブなサブサンプリングを行う手法であるアクティブ拡散サブサンプリング(ADS)を提案する。
ADSは、任意のサブサンプリングレートに対して事前トレーニングされた拡散モデルを使用して適用することができ、タスク固有の再トレーニング(測定モデルの仕様のみ)を必要としない。
さらに、ADSが採用する最大エントロピーサンプリングポリシーは解釈可能であり、ブラックボックスポリシーを用いた既存の手法と比較して透明性を高めている。
実験により, ADSは固定サンプリング手法より優れており, 高速MRIデータセットを用いた磁気共鳴イメージング加速におけるADSの応用について検討し, ADSが教師付き手法と競合することを示した。
コードはhttps://active-diffusion-subsampling.github.io/で公開されている。
関連論文リスト
- DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation [68.55191764622525]
拡散モデル(DPM)は、視覚合成において顕著な性能を示すが、サンプリング中に複数の評価を必要とするため、計算コストが高い。
最近の予測器合成・拡散サンプリング装置は,要求される評価回数を大幅に削減したが,本質的には誤調整の問題に悩まされている。
我々はDC-CPRrと呼ばれる新しい高速DPMサンプリング装置を導入する。
論文 参考訳(メタデータ) (2024-09-05T17:59:46Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
逆問題の解法として, 後方分布からのサンプルの変分推論手法を提案する。
本手法はユークリッド空間の標準信号や多様体上の信号に適用可能であることを示す。
論文 参考訳(メタデータ) (2024-07-25T09:53:12Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - Diffusion Rejection Sampling [13.945372555871414]
Diffusion Rejection Sampling (DiffRS) は、サンプリングされたトランジションカーネルを各タイムステップで真のカーネルと整列するリジェクションサンプリングスキームである。
提案手法は, 各中間段階における試料の品質を評価し, 試料に応じて異なる作業で精製する機構とみなすことができる。
実験により,ベンチマークデータセット上でのDiffRSの最先端性能と高速拡散サンプリングおよび大規模テキスト・画像拡散モデルに対するDiffRSの有効性を実証した。
論文 参考訳(メタデータ) (2024-05-28T07:00:28Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
本研究では,非正規化密度やエネルギー関数を持つ分布からサンプルを抽出する拡散モデルの訓練問題について検討する。
シミュレーションに基づく変分法や非政治手法など,拡散構造推論手法のベンチマークを行った。
我々の結果は、過去の研究の主張に疑問を投げかけながら、既存のアルゴリズムの相対的な利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-07T18:51:49Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - Diffusion Models with Deterministic Normalizing Flow Priors [23.212848643552395]
フローと拡散モデルを正規化する手法であるDiNof(textbfDi$ffusion with $textbfNo$rmalizing $textbff$low priors)を提案する。
標準画像生成データセットの実験は、既存の手法よりも提案手法の利点を実証している。
論文 参考訳(メタデータ) (2023-09-03T21:26:56Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
拡散確率モデル(DDPM、Denoising Diffusion Probabilistic Models)は近年注目されている。
DDPMは逆プロセスを定義することによって複雑なデータ分布から高品質なサンプルを生成する。
生成逆数ネットワーク(GAN)とは異なり、拡散モデルの潜伏空間は解釈できない。
本研究では,デノナイズ拡散過程をUDPM(Upsampling Diffusion Probabilistic Model)に一般化することを提案する。
論文 参考訳(メタデータ) (2023-05-25T17:25:14Z) - Denoising Diffusion Samplers [41.796349001299156]
拡散モデルの認知は、多くの領域で最先端の結果を提供する生成モデルの一般的なクラスである。
我々は、非正規化確率密度関数から大まかにサンプリングし、それらの正規化定数を推定する類似のアイデアを探求する。
この文脈ではスコアマッチングは適用できないが、モンテカルロサンプリングのために生成的モデリングで導入された多くのアイデアを利用することができる。
論文 参考訳(メタデータ) (2023-02-27T14:37:16Z) - Preconditioned Score-based Generative Models [49.88840603798831]
直感的な加速度法はサンプリングの繰り返しを減らし、しかしながら重大な性能劣化を引き起こす。
本稿では,行列プレコンディショニングを利用したモデル非依存型bfem事前条件拡散サンプリング(PDS)手法を提案する。
PDSは、バニラSGMのサンプリングプロセスを限界余剰計算コストで変更し、モデルの再訓練を行わない。
論文 参考訳(メタデータ) (2023-02-13T16:30:53Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
本稿では,エネルギーベースモデルから気軽に学習・サンプルできる拡散回復可能性法を提案する。
学習後、ガウスの白色雑音分布から初期化するサンプリングプロセスにより合成画像を生成することができる。
非条件 CIFAR-10 では,本手法は FID 9.58 と開始スコア 8.30 を達成する。
論文 参考訳(メタデータ) (2020-12-15T07:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。