論文の概要: ATAC-Net: Zoomed view works better for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2406.14398v1
- Date: Thu, 20 Jun 2024 15:18:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:03:05.465369
- Title: ATAC-Net: Zoomed view works better for Anomaly Detection
- Title(参考訳): ATAC-Net: Zoomed Viewは異常検出に適している
- Authors: Shaurya Gupta, Neil Gautam, Anurag Malyala,
- Abstract要約: ATAC-Netは、既知の最小限の事前異常から異常を検出する訓練を行うフレームワークである。
我々は、その優位性を、同等の設定で現在の最先端技術と比較する。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of deep learning in visual anomaly detection has gained widespread popularity due to its potential use in quality control and manufacturing. Current standard methods are Unsupervised, where a clean dataset is utilised to detect deviations and flag anomalies during testing. However, incorporating a few samples when the type of anomalies is known beforehand can significantly enhance performance. Thus, we propose ATAC-Net, a framework that trains to detect anomalies from a minimal set of known prior anomalies. Furthermore, we introduce attention-guided cropping, which provides a closer view of suspect regions during the training phase. Our framework is a reliable and easy-to-understand system for detecting anomalies, and we substantiate its superiority to some of the current state-of-the-art techniques in a comparable setting.
- Abstract(参考訳): 視覚異常検出におけるディープラーニングの適用は、品質管理や製造における潜在的な使用により、広く普及している。
現在の標準メソッドはUnsupervisedで、クリーンなデータセットを使用して、テスト中の逸脱やフラグの異常を検出する。
しかし、前もって異常のタイプが分かっていれば、いくつかのサンプルを組み込むことで、性能が大幅に向上する。
そこで本研究では,最小限の事前異常から異常を検出するためのフレームワークであるATAC-Netを提案する。
さらに,訓練期間中の被疑領域をより深く把握する,注意誘導型作付けも導入した。
我々のフレームワークは、異常を検出するための信頼性が高く理解しやすいシステムであり、その優位性を、同等の設定で現在の最先端技術と比較する。
関連論文リスト
- Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
本稿では,変分自己エンコーダ生成モデルに基づく異常検出システムのロバスト性について検討する。
目標は、再構成の違いを利用する異常検知器の実際の性能について、異なる視点を得ることです。
論文 参考訳(メタデータ) (2024-07-29T12:39:07Z) - View-Invariant Pixelwise Anomaly Detection in Multi-object Scenes with Adaptive View Synthesis [0.0]
インフラ資産の検査と監視には、定期的に撮影されるシーンの視覚異常を特定する必要がある。
手動で収集した画像や、同じ場面で同じシーンから無人航空機などのロボットで撮影された画像は、通常は完全に一致していない。
現在の非教師なし画素レベルの異常検出法は, 主に産業環境下で開発されている。
提案するScene AD問題に対処するために,OmniADと呼ばれる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-06-26T01:54:10Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
異常検出(AD)は、正規性の学習モデルに適合しない観察を識別する重要なタスクである。
本稿では, 入力空間における説明不能な観測として, 説明可能性を用いた新しいAD手法を提案する。
当社のアプローチでは,複数のベンチマークにまたがる新たな最先端性を確立し,さまざまな異常な型を扱う。
論文 参考訳(メタデータ) (2023-10-01T21:24:05Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - That's BAD: Blind Anomaly Detection by Implicit Local Feature Clustering [28.296651124677556]
ブラインド異常検出(BAD)の設定は、局所的な異常検出問題に変換することができる。
画像および画素レベルの異常を正確に検出できるPatchClusterという新しい手法を提案する。
実験結果から、PatchClusterは通常のデータを知ることなく、有望なパフォーマンスを示すことがわかった。
論文 参考訳(メタデータ) (2023-07-06T18:17:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Anomaly Detection via Self-organizing Map [52.542991004752]
製品品質管理のための工業生産において,異常検出が重要な役割を担っている。
従来の異常検出方法は、限定的な一般化能力を持つルールベースである。
教師付きディープラーニングに基づく最近の手法は、より強力だが、訓練には大規模な注釈付きデータセットが必要である。
論文 参考訳(メタデータ) (2021-07-21T06:56:57Z) - PANDA : Perceptually Aware Neural Detection of Anomalies [20.838700258121197]
視覚的に異なる異常と微妙な異常の両方を検出するために、半監督方式で訓練された新しい微粒VAE-GANアーキテクチャを提案する。
残差接続された二重機能抽出器, きめ細かい識別器, 知覚的損失関数を用いることで, 微妙で低いクラス間変異(異常対正常)を検出することができる。
論文 参考訳(メタデータ) (2021-04-28T11:03:50Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
クリーンサンプルのみを用いたアンタングル学習に基づく一対一画像異常検出システムを提案する。
3つのデータセットを用いて実験したところ、OIADは90%以上の異常を検出できる一方で、誤報率も低く抑えられることがわかった。
論文 参考訳(メタデータ) (2020-01-18T09:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。