論文の概要: Improving Expert Radiology Report Summarization by Prompting Large Language Models with a Layperson Summary
- arxiv url: http://arxiv.org/abs/2406.14500v1
- Date: Thu, 20 Jun 2024 17:01:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 12:33:17.530789
- Title: Improving Expert Radiology Report Summarization by Prompting Large Language Models with a Layperson Summary
- Title(参考訳): レイパーソン概要を用いた大規模言語モデルの提案による専門家放射線学レポート要約の改善
- Authors: Xingmeng Zhao, Tongnian Wang, Anthony Rios,
- Abstract要約: 放射線医学報告要約(RRS)は患者のケアに不可欠であり、詳細な「フィンディング」からの簡潔な「印象」を必要とする
本稿では、まず、素人要約を生成することでRSを強化するための新しいプロンプト戦略を提案する。
本結果は,特にドメイン外テストにおいて,要約精度とアクセシビリティの向上を示す。
- 参考スコア(独自算出の注目度): 8.003346409136348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiology report summarization (RRS) is crucial for patient care, requiring concise "Impressions" from detailed "Findings." This paper introduces a novel prompting strategy to enhance RRS by first generating a layperson summary. This approach normalizes key observations and simplifies complex information using non-expert communication techniques inspired by doctor-patient interactions. Combined with few-shot in-context learning, this method improves the model's ability to link general terms to specific findings. We evaluate this approach on the MIMIC-CXR, CheXpert, and MIMIC-III datasets, benchmarking it against 7B/8B parameter state-of-the-art open-source large language models (LLMs) like Meta-Llama-3-8B-Instruct. Our results demonstrate improvements in summarization accuracy and accessibility, particularly in out-of-domain tests, with improvements as high as 5% for some metrics.
- Abstract(参考訳): 放射線医学報告要約(RRS)は、患者のケアに不可欠であり、詳細な「フィンディング」からの簡潔な「印象」を必要とする。
本稿では、まず、素人要約を生成することでRSを強化するための新しいプロンプト戦略を提案する。
本手法は, 医師と患者との相互作用に触発された非専門的コミュニケーション技術を用いて, 鍵観測を正規化し, 複雑な情報を単純化する。
この手法は、数発のテキスト内学習と組み合わせることで、一般用語を特定の結果にリンクするモデルの能力を向上させる。
本手法をMIMIC-CXR,CheXpert,MIMIC-IIIデータセット上で評価し,Meta-Llama-3-8B-Instructのような7B/8Bパラメータのオープンソース大言語モデル(LLM)と比較した。
以上の結果から,特にドメイン外テストにおいて,要約精度とアクセシビリティが向上し,いくつかの指標では最大5%の改善が見られた。
関連論文リスト
- Improving Radiology Report Conciseness and Structure via Local Large Language Models [0.0]
本研究の目的は, 簡潔さと構造的構造を向上し, 放射線診断を向上することである。
この構造化されたアプローチにより、医師は関連する情報を素早く見つけ出し、レポートの有用性を高めることができる。
我々は、Mixtral、Mistral、Llamaなどの大規模言語モデル(LLM)を用いて、簡潔で構造化されたレポートを生成する。
論文 参考訳(メタデータ) (2024-11-06T19:00:57Z) - Enhanced Electronic Health Records Text Summarization Using Large Language Models [0.0]
このプロジェクトは、臨床が優先する、焦点を絞った要約を生成するシステムを作成することで、以前の作業の上に構築される。
提案システムでは,Flan-T5モデルを用いて,臨床専門のトピックに基づいた調整されたERHサマリーを生成する。
論文 参考訳(メタデータ) (2024-10-12T19:36:41Z) - RadBARTsum: Domain Specific Adaption of Denoising Sequence-to-Sequence Models for Abstractive Radiology Report Summarization [1.8450534779202723]
本研究では,抽象的放射線学レポート要約のためのドメイン固有かつ容易なBARTモデルの適応であるRadBARTsumを提案する。
本手法は,1)生物医学領域の知識学習を改善するための新しい実体マスキング戦略を用いて,放射線学報告の大規模コーパス上でBARTモデルを再学習すること,2)印象区間を予測するためにFindersとバックグラウンドセクションを用いて要約タスクのモデルを微調整すること,の2つの段階を含む。
論文 参考訳(メタデータ) (2024-06-05T08:43:11Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGEは、マルチモーダルEHR予測モデリングの強化を目的とした、検索拡張生成駆動フレームワークである。
提案手法は,大規模言語モデルにより時系列データと臨床メモの両方からエンティティを抽出する。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
本稿では,要約のための情報理論的目的に基づいて,強力な要約器を蒸留する新しい枠組みを提案する。
我々は,教師モデルとしてPythia-2.8Bから出発する。
我々は,ChatGPTと競合する5億8800万のパラメータしか持たないコンパクトだが強力な要約器に到達した。
論文 参考訳(メタデータ) (2024-03-20T17:42:08Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
ExaRanker-Openを導入し、オープンソース言語モデルを適用して、説明を生成する。
以上の結果から,LLMのサイズが大きくなるにつれて,説明の組み込みが神経ランク付けを継続的に促進することが明らかとなった。
論文 参考訳(メタデータ) (2024-02-09T11:23:14Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
放射線医学報告の「印象」セクションは、放射線医と他の医師とのコミュニケーションにとって重要な基盤である。
近年の研究では、大規模医療用テキストデータを用いた印象自動生成の有望な成果が得られている。
これらのモデルは、しばしば大量の医療用テキストデータを必要とし、一般化性能が劣る。
論文 参考訳(メタデータ) (2023-04-17T17:13:42Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
関係抽出(RE)は情報抽出(IE)のサブ分野である
本稿では,オープン情報抽出(OpenIE)の最近の取り組みがREの課題の改善にどのように役立つかを検討する。
本稿では,2つの注釈付きコーパスであるKnowledgeNetとFewRelを用いた実験により,拡張モデルの精度向上を実証した。
論文 参考訳(メタデータ) (2022-12-19T11:26:23Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。