論文の概要: IRASim: Learning Interactive Real-Robot Action Simulators
- arxiv url: http://arxiv.org/abs/2406.14540v1
- Date: Thu, 20 Jun 2024 17:50:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 12:23:24.022741
- Title: IRASim: Learning Interactive Real-Robot Action Simulators
- Title(参考訳): IRASim:インタラクティブなリアルロボットアクションシミュレータを学習
- Authors: Fangqi Zhu, Hongtao Wu, Song Guo, Yuxiao Liu, Chilam Cheang, Tao Kong,
- Abstract要約: 本稿では,ロボットアームが与えられた動作軌跡を実行する様子をリアルに映像化するための新しい手法IRASimを提案する。
提案手法の有効性を検証するため,3つの実ロボットデータセットに基づいて,新しいベンチマーク IRASim Benchmark を作成する。
その結果, IRASimはすべての基準法より優れており, 人的評価に好適であることが示唆された。
- 参考スコア(独自算出の注目度): 24.591694756757278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scalable robot learning in the real world is limited by the cost and safety issues of real robots. In addition, rolling out robot trajectories in the real world can be time-consuming and labor-intensive. In this paper, we propose to learn an interactive real-robot action simulator as an alternative. We introduce a novel method, IRASim, which leverages the power of generative models to generate extremely realistic videos of a robot arm that executes a given action trajectory, starting from an initial given frame. To validate the effectiveness of our method, we create a new benchmark, IRASim Benchmark, based on three real-robot datasets and perform extensive experiments on the benchmark. Results show that IRASim outperforms all the baseline methods and is more preferable in human evaluations. We hope that IRASim can serve as an effective and scalable approach to enhance robot learning in the real world. To promote research for generative real-robot action simulators, we open-source code, benchmark, and checkpoints at https: //gen-irasim.github.io.
- Abstract(参考訳): 現実世界でのスケーラブルなロボット学習は、実際のロボットのコストと安全性の問題によって制限されている。
さらに、現実世界でのロボット軌道の展開には時間と労力がかかります。
本稿では,対話型実ロボット行動シミュレータを代替として学習することを提案する。
本稿では、生成モデルのパワーを活用して、与えられた行動軌跡を実行するロボットアームの極めて現実的な映像を生成するIRASimを提案する。
提案手法の有効性を検証するため,3つの実ロボットデータセットに基づいてIRASim Benchmarkという新しいベンチマークを作成し,そのベンチマークで広範な実験を行う。
その結果, IRASimはすべての基準法より優れており, 人的評価に好適であることが示唆された。
IRASimが実世界でのロボット学習を強化するための効果的でスケーラブルなアプローチとして機能することを願っている。
生成した実ロボットの動作シミュレータの研究を促進するため、https: //gen-irasim.github.ioでコード、ベンチマーク、チェックポイントをオープンソース化した。
関連論文リスト
- Simulation-Aided Policy Tuning for Black-Box Robot Learning [47.83474891747279]
本稿では,データ効率の向上に着目した新しいブラックボックスポリシー探索アルゴリズムを提案する。
このアルゴリズムはロボット上で直接学習し、シミュレーションを追加の情報源として扱い、学習プロセスを高速化する。
ロボットマニピュレータ上でのタスク学習の高速化と成功を,不完全なシミュレータの助けを借りて示す。
論文 参考訳(メタデータ) (2024-11-21T15:52:23Z) - Generalized Robot Learning Framework [10.03174544844559]
本稿では,様々なロボットや環境に容易に再現可能かつ伝達可能な,低コストなロボット学習フレームワークを提案する。
我々は,産業用ロボットにおいても,デプロイ可能な模倣学習をうまく適用できることを実証した。
論文 参考訳(メタデータ) (2024-09-18T15:34:31Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - SCENEREPLICA: Benchmarking Real-World Robot Manipulation by Creating
Replicable Scenes [5.80109297939618]
実世界におけるロボット操作の評価のための再現可能な新しいベンチマークを提案し,特にピック・アンド・プレイスに着目した。
我々のベンチマークでは、ロボットコミュニティでよく使われているデータセットであるYCBオブジェクトを使用して、結果が他の研究と比較されるようにしています。
論文 参考訳(メタデータ) (2023-06-27T16:59:15Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - DayDreamer: World Models for Physical Robot Learning [142.11031132529524]
深層強化学習はロボット学習の一般的なアプローチであるが、学習するには大量の試行錯誤が必要となる。
ロボット学習の多くの進歩はシミュレータに依存している。
本稿では,Dreamerを4つのロボットに適用し,シミュレータを使わずに,オンラインおよび実世界で直接学習する。
論文 参考訳(メタデータ) (2022-06-28T17:44:48Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Back to Reality for Imitation Learning [8.57914821832517]
模倣学習と一般のロボット学習は、ロボット工学のブレークスルーではなく、機械学習のブレークスルーによって生まれた。
私たちは、現実世界のロボット学習のより良い指標は時間効率であり、人間の真のコストをモデル化するものだと考えています。
論文 参考訳(メタデータ) (2021-11-25T02:03:52Z) - robo-gym -- An Open Source Toolkit for Distributed Deep Reinforcement
Learning on Real and Simulated Robots [0.5161531917413708]
本稿では,ロボットによる深層強化学習を向上するためのオープンソースのツールキット,robo-gymを提案する。
シミュレーションにおけるトレーニングからロボットへのシームレスな移動を可能にするシミュレーション環境と実環境の統一的なセットアップを実証する。
産業用ロボットを特徴とする2つの実世界アプリケーションを用いて,本フレームワークの能力と有効性を示す。
論文 参考訳(メタデータ) (2020-07-06T13:51:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。