論文の概要: Attention Networks for Personalized Mealtime Insulin Dosing in People with Type 1 Diabetes
- arxiv url: http://arxiv.org/abs/2406.14579v1
- Date: Tue, 18 Jun 2024 17:59:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 18:37:49.138669
- Title: Attention Networks for Personalized Mealtime Insulin Dosing in People with Type 1 Diabetes
- Title(参考訳): 1型糖尿病患者における経時的インスリン投与の注意ネットワーク
- Authors: Anas El Fathi, Elliott Pryor, Marc D. Breton,
- Abstract要約: 本稿では,自己注意型エンコーダネットワークを用いた強化学習エージェントが,この直感的な処理を効果的に模倣し,強化する方法を実証する。
その結果、センサー強化ポンプのシナリオでは16.5から9.6に、自動インスリンデリバリーのシナリオでは9.1から6.7に、血糖リスクは著しく低下した。
- 参考スコア(独自算出の注目度): 0.30723404270319693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Calculating mealtime insulin doses poses a significant challenge for individuals with Type 1 Diabetes (T1D). Doses should perfectly compensate for expected post-meal glucose excursions, requiring a profound understanding of the individual's insulin sensitivity and the meal macronutrients'. Usually, people rely on intuition and experience to develop this understanding. In this work, we demonstrate how a reinforcement learning agent, employing a self-attention encoder network, can effectively mimic and enhance this intuitive process. Trained on 80 virtual subjects from the FDA-approved UVA/Padova T1D adult cohort and tested on twenty, self-attention demonstrates superior performance compared to other network architectures. Results reveal a significant reduction in glycemic risk, from 16.5 to 9.6 in scenarios using sensor-augmented pump and from 9.1 to 6.7 in scenarios using automated insulin delivery. This new paradigm bypasses conventional therapy parameters, offering the potential to simplify treatment and promising improved quality of life and glycemic outcomes for people with T1D.
- Abstract(参考訳): 食事時のインスリン摂取量を計算することは、1型糖尿病(T1D)の患者にとって大きな課題となる。
ドーゼは、食事後のグルコースの排出を完璧に補償し、個人のインスリン感受性と食事用マクロ栄養素の深い理解を必要とする。
通常、人々はこの理解を発達させるために直観と経験に依存します。
本研究では,自己注意型エンコーダネットワークを用いた強化学習エージェントが,この直感的な処理を効果的に模倣し,強化する方法を実証する。
FDAが承認したUVA/Padova T1Dアダルトコホートから80の仮想被験者でトレーニングされ、20でテストされたセルフアテンションは、他のネットワークアーキテクチャと比較して優れたパフォーマンスを示している。
その結果、センサー強化ポンプのシナリオでは16.5から9.6に、自動インスリンデリバリーのシナリオでは9.1から6.7に、血糖リスクは著しく低下した。
この新たなパラダイムは、従来の治療パラメータをバイパスし、治療を簡素化し、T1D患者の生活の質と血糖値の改善を期待できる可能性を提供する。
関連論文リスト
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
自己申告法はしばしば不正確であり、重大な偏見に悩まされる。
近年、食品画像から栄養情報を予測するためにコンピュータビジョン予測システムを用いた研究が進められている。
本稿では,様々なニューラルネットワークアーキテクチャを活用することにより,食事摂取量推定の有効性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-05-13T14:56:55Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - Using Reinforcement Learning to Simplify Mealtime Insulin Dosing for
People with Type 1 Diabetes: In-Silico Experiments [0.40792653193642503]
1型糖尿病(T1D)の患者は、食事時に最適なインスリン摂取量を計算するのに苦労する。
定性食事(QM)戦略に対応する最適な食事関連インスリン投与を推奨するRLエージェントを提案する。
論文 参考訳(メタデータ) (2023-09-17T01:34:02Z) - An Ensemble Learning Approach for Exercise Detection in Type 1 Diabetes
Patients [9.491537214222756]
本研究では,データ駆動型生理モデルとシームズネットワークを組み合わせたアンサンブル学習フレームワークを提案する。
提案手法は,運動検出における正の86.4%,正の負の99.1%を達成し,最先端のソリューションを上回った。
論文 参考訳(メタデータ) (2023-05-11T07:28:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Temporal patterns in insulin needs for Type 1 diabetes [0.0]
1型糖尿病 (Type 1 Diabetes, T1D) は、身体がインスリンをほとんど分泌しない慢性疾患である。
正しいインスリン摂取量と時間を見つけることは、複雑で困難であり、まだ未解決のコントロールタスクである。
本研究ではOpenAPS Data Commonsデータセットを用いて、インスリンに必要な時間的パターンをよく知られた要因によって検出する。
論文 参考訳(メタデータ) (2022-11-14T14:19:50Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - Enhancing Food Intake Tracking in Long-Term Care with Automated Food
Imaging and Nutrient Intake Tracking (AFINI-T) Technology [71.37011431958805]
長期医療(LTC)の住民の半数は、入院、死亡、死亡率、生活の質の低下が悪化している。
本稿では,LCCのための食品自動撮像・栄養摂取追跡技術(AFINI-T)について述べる。
論文 参考訳(メタデータ) (2021-12-08T22:25:52Z) - Deep Reinforcement Learning for Closed-Loop Blood Glucose Control [12.989855325491163]
自動血糖コントロールのための強化学習技術を開発した。
30人のシミュレーション患者から得られた2100万時間以上のデータに基づいて、我々のRLアプローチはベースライン制御アルゴリズムより優れています。
論文 参考訳(メタデータ) (2020-09-18T20:15:02Z) - Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement
Learning: An In Silico Validation [16.93692520921499]
単一ホルモン(インスリン)と二重ホルモン(インスリンとグルカゴン)のデリバリーのための新しい深層強化学習モデルを提案する。
成体コホートでは、目標範囲のパーセンテージは77.6%から80.9%に改善した。
青年コホートでは、目標範囲のパーセンテージが55.5%から65.9%に改善され、単一ホルモンが制御された。
論文 参考訳(メタデータ) (2020-05-18T20:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。