論文の概要: UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions
- arxiv url: http://arxiv.org/abs/2406.12784v1
- Date: Tue, 18 Jun 2024 16:50:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 17:59:05.013863
- Title: UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions
- Title(参考訳): UBENCH: 複数質問による大規模言語モデルにおける不確かさのベンチマーク
- Authors: Xunzhi Wang, Zhuowei Zhang, Qiongyu Li, Gaonan Chen, Mengting Hu, Zhiyu li, Bitong Luo, Hang Gao, Zhixin Han, Haotian Wang,
- Abstract要約: UBENCHは、大きな言語モデルを評価するためのベンチマークである。
これには、知識、言語、理解、推論能力に関する3,978の質問が含まれている。
また,15個のLPMの信頼性を評価し,GLM4が最も優れていることを発見した。
- 参考スコア(独自算出の注目度): 10.28688988951815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of large language models (LLMs) has shown promising practical results. However, their low interpretability often leads to errors in unforeseen circumstances, limiting their utility. Many works have focused on creating comprehensive evaluation systems, but previous benchmarks have primarily assessed problem-solving abilities while neglecting the response's uncertainty, which may result in unreliability. Recent methods for measuring LLM reliability are resource-intensive and unable to test black-box models. To address this, we propose UBENCH, a comprehensive benchmark for evaluating LLM reliability. UBENCH includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities. Experimental results show that UBENCH has achieved state-of-the-art performance, while its single-sampling method significantly saves computational resources compared to baseline methods that require multiple samplings. Additionally, based on UBENCH, we evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding, closely followed by GPT-4. We also explore the impact of Chain-of-Thought prompts, role-playing prompts, option order, and temperature on LLM reliability, analyzing the varying effects on different LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な開発は、有望な実用的な結果を示している。
しかし、その低い解釈可能性はしばしば、予期せぬ状況でエラーを引き起こし、実用性は制限される。
多くの研究は総合的な評価システムの構築に重点を置いてきたが、以前のベンチマークでは主に問題解決能力を評価し、応答の不確実性を無視した。
近年のLCMの信頼性測定手法は資源集約的であり,ブラックボックスモデルのテストは不可能である。
そこで本研究では,LLMの信頼性を評価するための総合的なベンチマークUBENCHを提案する。
UBENCHには、知識、言語、理解、推論能力に関する3,978の質問が含まれている。
実験結果から,UBENCHは最先端性能を実現しているが,単一サンプリング方式では,複数のサンプリングを必要とするベースライン方式に比べて,計算資源を著しく削減できることがわかった。
さらに,UBENCHをベースとした15のLLMの信頼性を評価し,GLM4が最も優れており,GPT-4がそれに近づいた。
また,LLMの信頼性に及ぼすChain-of-Thoughtプロンプト,ロールプレイングプロンプト,オプションオーダー,温度の影響を検討した。
関連論文リスト
- SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
安全でないユーザリクエストを認識して拒否する、大規模な言語モデル(LLM)の既存の評価は、3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い粒度を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
第3に、既存の評価は大きなLCMに頼っているため、コストがかかる可能性がある。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Language Models can Evaluate Themselves via Probability Discrepancy [38.54454263880133]
様々な大規模言語モデル(LLM)の有効性を評価するための自己評価手法ProbDiffを提案する。
テスト中のLSMを、初期応答と修正バージョンの間の確率差を計算するために独自に利用する。
以上の結果から, ProbDiff は GPT-4 に基づく評価結果と同等の結果を得た。
論文 参考訳(メタデータ) (2024-05-17T03:50:28Z) - Evaluation and Improvement of Fault Detection for Large Language Models [30.760472387136954]
本稿では,大規模言語モデル(LLM)における既存の故障検出手法の有効性について検討する。
既存の手法の故障検出能力を高めるために, textbfMutation による予測を行う textbfConfidence textbfSmoothing フレームワーク textbfMuCS を提案する。
論文 参考訳(メタデータ) (2024-04-14T07:06:12Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis,
and LLMs Evaluations [111.88727295707454]
本稿では,NLP分野におけるアウト・オブ・ディストリビューション(OOD)のロバスト性に関する研究を再検討する。
本稿では, 明確な分化と分散の困難さを保証するための, ベンチマーク構築プロトコルを提案する。
我々は,OODロバスト性の分析と評価のための事前学習言語モデルの実験を行った。
論文 参考訳(メタデータ) (2023-06-07T17:47:03Z) - Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models [37.63939774027709]
自然言語生成(NLG)に特化した大規模言語モデル(LLM)が,最近,有望な機能を示すようになった。
我々は、信頼できない結果が無視されるか、さらなる評価のために得られるような、選択的なNLG*に適用し、いくつかの信頼/不確実性対策を提案し、比較する。
その結果, セマンティックな分散の簡易な測定は, LLM応答の質の信頼性を予測できることがわかった。
論文 参考訳(メタデータ) (2023-05-30T16:31:26Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。