論文の概要: Consistent community detection in multi-layer networks with heterogeneous differential privacy
- arxiv url: http://arxiv.org/abs/2406.14772v1
- Date: Thu, 20 Jun 2024 22:49:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 15:22:05.745529
- Title: Consistent community detection in multi-layer networks with heterogeneous differential privacy
- Title(参考訳): 異種差分プライバシーを有する多層ネットワークにおける一貫性コミュニティ検出
- Authors: Yaoming Zhen, Shirong Xu, Junhui Wang,
- Abstract要約: 本稿では,各ノードのプライバシ設定に基づいて,エッジ情報を保護可能なエッジフリップ機構を提案する。
多層度補正ブロックモデルの下でコミュニティ構造を保ちながら、差分プライバシーを実現することができる。
エッジのより優れたプライバシ保護は、ノードの割合で取得可能であると同時に、他のノードがプライバシを放棄できることが示されています。
- 参考スコア(独自算出の注目度): 4.451479907610764
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As network data has become increasingly prevalent, a substantial amount of attention has been paid to the privacy issue in publishing network data. One of the critical challenges for data publishers is to preserve the topological structures of the original network while protecting sensitive information. In this paper, we propose a personalized edge flipping mechanism that allows data publishers to protect edge information based on each node's privacy preference. It can achieve differential privacy while preserving the community structure under the multi-layer degree-corrected stochastic block model after appropriately debiasing, and thus consistent community detection in the privatized multi-layer networks is achievable. Theoretically, we establish the consistency of community detection in the privatized multi-layer network and show that better privacy protection of edges can be obtained for a proportion of nodes while allowing other nodes to give up their privacy. Furthermore, the advantage of the proposed personalized edge-flipping mechanism is also supported by its numerical performance on various synthetic networks and a real-life multi-layer network.
- Abstract(参考訳): ネットワークデータがますます普及するにつれて、ネットワークデータを公開する際のプライバシー問題にかなりの注意が払われている。
データパブリッシャにとって重要な課題の1つは、機密情報を保護しながら、元のネットワークのトポロジ的構造を保存することである。
本稿では,各ノードのプライバシの嗜好に基づいて,データパブリッシャがエッジ情報を保護できるような,パーソナライズされたエッジフリップ機構を提案する。
多層補正確率ブロックモデルに基づくコミュニティ構造を適切にデバイアスした後に保存しながら、差分プライバシーを実現することができるため、民営化された多層ネットワークにおける一貫したコミュニティ検出が実現可能である。
理論的には、民営化された多層ネットワークにおけるコミュニティ検出の整合性を確立し、エッジの適切なプライバシ保護がノードの割合で得られ、他のノードがプライバシを放棄できることを示す。
さらに, 提案手法の利点は, 各種合成ネットワークおよび実生活多層ネットワーク上での数値的性能に支えられている。
関連論文リスト
- Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
本稿では,ネットワーク情報公開の文脈における偏見と不公平性に対する差別的プライバシの影響を特徴づける。
ネットワーク構造が全員に知られているネットワークリリースの問題を考えるが、エッジの重みをプライベートにリリースする必要がある。
我々の研究は、これらのネットワーク化された決定問題におけるプライバシーに起因する偏見と不公平性に関する理論的根拠と実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-08-08T08:37:37Z) - Unveiling Privacy Vulnerabilities: Investigating the Role of Structure in Graph Data [17.11821761700748]
本研究では,ネットワーク構造から生じるプライバシーリスクに対する理解と保護を推し進める。
我々は,ネットワーク構造によるプライバシー漏洩の可能性を評価するための重要なツールとして機能する,新しいグラフプライベート属性推論攻撃を開発した。
攻撃モデルはユーザのプライバシに重大な脅威を与え,グラフデータ公開手法は最適なプライバシとユーティリティのトレードオフを実現する。
論文 参考訳(メタデータ) (2024-07-26T07:40:54Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Large-Scale Privacy-Preserving Network Embedding against Private Link
Inference Attacks [12.434976161956401]
プライバシ保護ネットワークがプライベートリンク推論攻撃に対して組み込まれるという,新たな問題に対処する。
本稿では,リンクの追加や削除によるオリジナルのネットワークの摂動について提案する。また,この摂動ネットワーク上で発生した埋め込みは,プライベートリンクに関する情報をほとんど漏らすことなく,様々な下流タスクに高いユーティリティを保持することができることを期待する。
論文 参考訳(メタデータ) (2022-05-28T13:59:39Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。