論文の概要: Graph Edge Representation via Tensor Product Graph Convolutional Representation
- arxiv url: http://arxiv.org/abs/2406.14846v1
- Date: Fri, 21 Jun 2024 03:21:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 14:52:36.136545
- Title: Graph Edge Representation via Tensor Product Graph Convolutional Representation
- Title(参考訳): Tensor Product Graph Convolutional Representationによるグラフエッジ表現
- Authors: Bo Jiang, Sheng Ge, Ziyan Zhang, Beibei Wang, Jin Tang, Bin Luo,
- Abstract要約: 本稿では,Product Graph Convolution (TPGC) と呼ばれるエッジ特徴を持つグラフ上の効率的な畳み込み演算子を定義する。
従来のグラフ畳み込み(GC)を補完するモデルを提供し、ノードとエッジの両方でより一般的なグラフデータ解析に対処する。
いくつかのグラフ学習タスクの実験結果から,提案したTPGCの有効性が示された。
- 参考スコア(独自算出の注目度): 23.021660625582854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) have been widely studied. The core of GCNs is the definition of convolution operators on graphs. However, existing Graph Convolution (GC) operators are mainly defined on adjacency matrix and node features and generally focus on obtaining effective node embeddings which cannot be utilized to address the graphs with (high-dimensional) edge features. To address this problem, by leveraging tensor contraction representation and tensor product graph diffusion theories, this paper analogously defines an effective convolution operator on graphs with edge features which is named as Tensor Product Graph Convolution (TPGC). The proposed TPGC aims to obtain effective edge embeddings. It provides a complementary model to traditional graph convolutions (GCs) to address the more general graph data analysis with both node and edge features. Experimental results on several graph learning tasks demonstrate the effectiveness of the proposed TPGC.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は広く研究されている。
GCNの中核はグラフ上の畳み込み作用素の定義である。
しかし、既存のグラフ畳み込み(GC)演算子は、主に隣接行列とノード特徴に基づいて定義されており、一般に(高次元)エッジ特徴でグラフに対処できない効果的なノード埋め込みの獲得に重点を置いている。
この問題に対処するために,テンソル積グラフ拡散理論とテンソル積グラフ拡散理論を用いて,テンソル積グラフ畳み込み(TPGC)と呼ばれるエッジ特徴を持つグラフ上の効果的な畳み込み演算子を類似的に定義する。
提案するTPGCは,効率的なエッジ埋め込みの実現を目的としている。
従来のグラフ畳み込み(GC)を補完するモデルを提供し、ノードとエッジの両方でより一般的なグラフデータ解析に対処する。
いくつかのグラフ学習タスクの実験結果から,提案したTPGCの有効性が示された。
関連論文リスト
- Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning [47.74244053386216]
グラフ凝縮は、大規模原グラフのコンパクトで代替的なグラフを合成するための有望な解である。
本稿では、自己教師型代理タスクを取り入れたCTGC(Contrastive Graph Condensation)を導入し、元のグラフから批判的、因果的な情報を抽出する。
CTGCは、様々な下流タスクを限られたラベルで処理し、一貫して最先端のGCメソッドより優れている。
論文 参考訳(メタデータ) (2024-11-26T03:01:22Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
既存のグラフ凝縮法は、凝縮グラフ内のノードと構造の合同最適化に依存している。
我々は、大規模グラフを小さなグラフノード集合に蒸留する、SFGCと呼ばれる新しい構造自由グラフ凝縮パラダイムを提唱する。
論文 参考訳(メタデータ) (2023-06-05T07:53:52Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
グラフトポロジ、ノード特徴、ラベル間の重なり合う情報を定量化する。
グラフの畳み込みは、グラフの畳み込みに代わる単純だが柔軟な代替手段であることを示す。
論文 参考訳(メタデータ) (2022-07-18T16:39:33Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
グラフのトポロジ特性を学習するグラフ畳み込みネットワークのための新しいフレームワークを提案する。
本手法の設計原理は制約対象関数の最適化に基づいている。
骨格に基づく行動認識の課題に対して行った実験は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2021-12-06T19:43:26Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Directed Graph Convolutional Network [15.879411956536885]
スペクトルベースのグラフ畳み込みを1階と2階の近接を利用して有向グラフに拡張する。
DGCNと呼ばれる新しいGCNモデルは、有向グラフ上で表現を学ぶように設計されている。
論文 参考訳(メタデータ) (2020-04-29T06:19:10Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network(GCN)は,グラフデータの学習と推論を行う新興技術である。
我々は、GCNの既存の設計がクロスフィーチャをモデリングし、クロスフィーチャが重要であるタスクやデータに対してGCNの効率を損なうことを論じている。
我々は、任意の次交叉特徴を、特徴次元と順序サイズに線形に複雑にモデル化した、クロスフィーチャーグラフ畳み込みという新しい演算子を設計する。
論文 参考訳(メタデータ) (2020-03-05T13:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。