論文の概要: Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2411.17063v1
- Date: Tue, 26 Nov 2024 03:01:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:18.490820
- Title: Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning
- Title(参考訳): 対照的なグラフ凝縮: 自己監督学習によるデータの粘度向上
- Authors: Xinyi Gao, Yayong Li, Tong Chen, Guanhua Ye, Wentao Zhang, Hongzhi Yin,
- Abstract要約: グラフ凝縮は、大規模原グラフのコンパクトで代替的なグラフを合成するための有望な解である。
本稿では、自己教師型代理タスクを取り入れたCTGC(Contrastive Graph Condensation)を導入し、元のグラフから批判的、因果的な情報を抽出する。
CTGCは、様々な下流タスクを限られたラベルで処理し、一貫して最先端のGCメソッドより優れている。
- 参考スコア(独自算出の注目度): 47.74244053386216
- License:
- Abstract: With the increasing computation of training graph neural networks (GNNs) on large-scale graphs, graph condensation (GC) has emerged as a promising solution to synthesize a compact, substitute graph of the large-scale original graph for efficient GNN training. However, existing GC methods predominantly employ classification as the surrogate task for optimization, thus excessively relying on node labels and constraining their utility in label-sparsity scenarios. More critically, this surrogate task tends to overfit class-specific information within the condensed graph, consequently restricting the generalization capabilities of GC for other downstream tasks. To address these challenges, we introduce Contrastive Graph Condensation (CTGC), which adopts a self-supervised surrogate task to extract critical, causal information from the original graph and enhance the cross-task generalizability of the condensed graph. Specifically, CTGC employs a dual-branch framework to disentangle the generation of the node attributes and graph structures, where a dedicated structural branch is designed to explicitly encode geometric information through nodes' positional embeddings. By implementing an alternating optimization scheme with contrastive loss terms, CTGC promotes the mutual enhancement of both branches and facilitates high-quality graph generation through the model inversion technique. Extensive experiments demonstrate that CTGC excels in handling various downstream tasks with a limited number of labels, consistently outperforming state-of-the-art GC methods.
- Abstract(参考訳): 大規模グラフ上でのトレーニンググラフニューラルネットワーク(GNN)の計算の増大に伴い、グラフ凝縮(GC)は、GNNの効率的なトレーニングのために、大規模オリジナルグラフのコンパクトで代替的なグラフを合成するための有望なソリューションとして登場した。
しかし、既存のGCメソッドは主に最適化のサロゲートタスクとして分類を採用しており、ノードラベルを過度に頼り、ラベルスパーシティのシナリオでそれらのユーティリティを制限している。
さらに重要なことに、この代理タスクは、凝縮グラフ内のクラス固有の情報を過度に最適化する傾向にあり、その結果、他の下流タスクに対するGCの一般化能力が制限される。
これらの課題に対処するために、コントラストグラフ凝縮(CTGC)を導入し、自己教師付き代理タスクを導入し、原グラフから批判的、因果的な情報を抽出し、縮合グラフのクロスタスク一般化性を高める。
具体的には、CTGCは、ノード属性とグラフ構造の生成をアンタングルするためにデュアルブランチフレームワークを使用し、専用の構造分岐はノードの位置埋め込みを通じて幾何学的情報を明示的にエンコードするように設計されている。
対照的な損失項を交互に最適化することにより、CTGCは両枝の相互拡張を促進し、モデル逆転法による高品質なグラフ生成を促進する。
広範囲な実験により、CTGCは様々な下流タスクを限られたラベルで処理し、一貫して最先端のGCメソッドより優れていることが示されている。
関連論文リスト
- RobGC: Towards Robust Graph Condensation [61.259453496191696]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の目覚ましい能力によって広く注目を集めている。
しかし,大規模グラフの普及は,その計算要求により,GNNトレーニングにとって大きな課題となる。
本稿では,GNNを効率よく学習し,性能を保ちつつ,情報的コンパクトなグラフを生成するために,GC(Graph Condensation)を提案する。
論文 参考訳(メタデータ) (2024-06-19T04:14:57Z) - HC-GAE: The Hierarchical Cluster-based Graph Auto-Encoder for Graph Representation Learning [24.641827220223682]
グラフデータ解析に有効な構造特性を学習できる階層型クラスタベースGAE(HC-GAE)を開発した。
提案したHC-GAEは,ノード分類やグラフ分類に有効な表現を生成できる。
論文 参考訳(メタデータ) (2024-05-23T16:08:04Z) - Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition [56.26113670151363]
グラフ凝縮(Graph condensation)は、大きなグラフを小さいが情報的な凝縮グラフに置き換えるための、データ中心のソリューションである。
既存のGCメソッドは複雑な最適化プロセスに悩まされており、過剰な計算資源を必要とする。
我々は、CGC(Class-partitioned Graph Condensation)と呼ばれるトレーニング不要なGCフレームワークを提案する。
CGCはより効率的な凝縮プロセスで最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-05-22T14:57:09Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Generative and Contrastive Paradigms Are Complementary for Graph
Self-Supervised Learning [56.45977379288308]
Masked Autoencoder (MAE)は、マスク付きグラフエッジやノード機能の再構築を学ぶ。
Contrastive Learning (CL)は、同じグラフの拡張ビュー間の類似性を最大化する。
我々は,MAE と CL を統一するグラフコントラッシブマスク付きオートエンコーダ (GCMAE) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T05:06:06Z) - Transforming Graphs for Enhanced Attribute Clustering: An Innovative
Graph Transformer-Based Method [8.989218350080844]
本研究では、グラフクラスタリングのためのグラフトランスフォーマーオートエンコーダ(GTAGC)と呼ばれる革新的な手法を提案する。
Graph Auto-EncoderをGraph Transformerでマージすることで、GTAGCはノード間のグローバルな依存関係をキャプチャできる。
GTAGCのアーキテクチャはグラフの埋め込み、オートエンコーダ構造内のグラフ変換器の統合、クラスタリングコンポーネントを含んでいる。
論文 参考訳(メタデータ) (2023-06-20T06:04:03Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
グラフ表現学習に自己教師付き学習機構を導入する。
本稿では,新しい自己教師型コンセンサス表現学習フレームワークを提案する。
提案手法はトポロジグラフと特徴グラフの2つの視点からグラフを扱う。
論文 参考訳(メタデータ) (2021-08-10T07:53:09Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
本稿では,学習可能な潜伏変数を用いて埋め込みを生成する自己構築グラフ(SCG)を提案する。
SCGは、空中画像中の複雑な形状の物体から、最適化された非局所的なコンテキストグラフを自動的に取得することができる。
本稿では,ISPRS Vaihingen データセット上で提案した SCG の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2020-03-15T21:55:24Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network(GCN)は,グラフデータの学習と推論を行う新興技術である。
我々は、GCNの既存の設計がクロスフィーチャをモデリングし、クロスフィーチャが重要であるタスクやデータに対してGCNの効率を損なうことを論じている。
我々は、任意の次交叉特徴を、特徴次元と順序サイズに線形に複雑にモデル化した、クロスフィーチャーグラフ畳み込みという新しい演算子を設計する。
論文 参考訳(メタデータ) (2020-03-05T13:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。