A review of feature selection strategies utilizing graph data structures and knowledge graphs
- URL: http://arxiv.org/abs/2406.14864v1
- Date: Fri, 21 Jun 2024 04:50:02 GMT
- Title: A review of feature selection strategies utilizing graph data structures and knowledge graphs
- Authors: Sisi Shao, Pedro Henrique Ribeiro, Christina Ramirez, Jason H. Moore,
- Abstract summary: Feature selection in Knowledge Graphs (KGs) are increasingly utilized in diverse domains, including biomedical research, Natural Language Processing (NLP), and personalized recommendation systems.
This paper delves into the methodologies for feature selection within KGs, emphasizing their roles in enhancing machine learning (ML) model efficacy, hypothesis generation, and interpretability.
The paper concludes by charting future directions, including the development of scalable, dynamic feature selection algorithms and the integration of explainable AI principles to foster transparency and trust in KG-driven models.
- Score: 1.9570926122713395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection in Knowledge Graphs (KGs) are increasingly utilized in diverse domains, including biomedical research, Natural Language Processing (NLP), and personalized recommendation systems. This paper delves into the methodologies for feature selection within KGs, emphasizing their roles in enhancing machine learning (ML) model efficacy, hypothesis generation, and interpretability. Through this comprehensive review, we aim to catalyze further innovation in feature selection for KGs, paving the way for more insightful, efficient, and interpretable analytical models across various domains. Our exploration reveals the critical importance of scalability, accuracy, and interpretability in feature selection techniques, advocating for the integration of domain knowledge to refine the selection process. We highlight the burgeoning potential of multi-objective optimization and interdisciplinary collaboration in advancing KG feature selection, underscoring the transformative impact of such methodologies on precision medicine, among other fields. The paper concludes by charting future directions, including the development of scalable, dynamic feature selection algorithms and the integration of explainable AI principles to foster transparency and trust in KG-driven models.
Related papers
- Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey [16.89460694470542]
Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge representation.
INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit functions.
This survey introduces a clear taxonomy that categorises them into four key areas: activation functions, position encoding, combined strategies, and network structure.
arXiv Detail & Related papers (2024-11-06T06:14:24Z) - Optimizing Feature Selection with Genetic Algorithms: A Review of Methods and Applications [4.395397502990339]
Genetic algorithms (GAs) have been proposed to provide remedies for drawbacks by avoiding local optima and improving the selection process itself.
This manuscript presents a sweeping review on GA-based feature selection techniques in applications and their effectiveness across different domains.
arXiv Detail & Related papers (2024-09-05T22:28:42Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparse is a novel machine learning model from the family of generalized additive models.
It promotes sparsity through a non-linear feature selection process during training.
This ensures interpretability through improved model sparsity without sacrificing predictive performance.
arXiv Detail & Related papers (2024-03-17T22:44:36Z) - Enhancing Multi-Hop Knowledge Graph Reasoning through Reward Shaping
Techniques [5.561202401558972]
This research elucidates the employment of reinforcement learning strategies, notably the REINFORCE algorithm, to navigate the intricacies inherent in multi-hop Knowledge Graphs (KG-R)
By partitioning the Unified Medical Language System (UMLS) benchmark dataset into rich and sparse subsets, we investigate the efficacy of pre-trained BERT embeddings and Prompt Learning methodologies to refine the reward shaping process.
arXiv Detail & Related papers (2024-03-09T05:34:07Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - GPT in Data Science: A Practical Exploration of Model Selection [0.7646713951724013]
This research is committed to advancing our comprehension of AI decision-making processes.
Our efforts are directed towards creating AI systems that are more transparent and comprehensible.
arXiv Detail & Related papers (2023-11-20T03:42:24Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models.
The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies.
We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
arXiv Detail & Related papers (2023-07-03T16:01:45Z) - Joint Feature and Differentiable $ k $-NN Graph Learning using Dirichlet
Energy [103.74640329539389]
We propose a deep FS method that simultaneously conducts feature selection and differentiable $ k $-NN graph learning.
We employ Optimal Transport theory to address the non-differentiability issue of learning $ k $-NN graphs in neural networks.
We validate the effectiveness of our model with extensive experiments on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-21T08:15:55Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
We extend the Neural ODE Process model to use additional information within the Learning Using Privileged Information setting.
We validate our extension with experiments showing improved accuracy and calibration on simulated dynamics tasks.
arXiv Detail & Related papers (2021-04-29T12:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.