論文の概要: LLM2FEA: Discover Novel Designs with Generative Evolutionary Multitasking
- arxiv url: http://arxiv.org/abs/2406.14917v1
- Date: Fri, 21 Jun 2024 07:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 14:33:07.184565
- Title: LLM2FEA: Discover Novel Designs with Generative Evolutionary Multitasking
- Title(参考訳): LLM2FEA: 生成的進化的マルチタスクによる新しい設計の発見
- Authors: Melvin Wong, Jiao Liu, Thiago Rios, Stefan Menzel, Yew Soon Ong,
- Abstract要約: 本稿では,複数の領域にまたがる知識を伝達することで,生成モデルにおける新しい設計を初めて発見する試みを提案する。
多要素進化アルゴリズム(MFEA)を用いて大きな言語モデルを駆動し、LLM2FEAは様々な分野からの知識を統合し、新規で実用的なオブジェクトを発見する際に生成モデルを導くプロンプトを生成する。
- 参考スコア(独自算出の注目度): 21.237950330178354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid research and development of generative artificial intelligence has enabled the generation of high-quality images, text, and 3D models from text prompts. This advancement impels an inquiry into whether these models can be leveraged to create digital artifacts for both creative and engineering applications. Drawing on innovative designs from other domains may be one answer to this question, much like the historical practice of ``bionics", where humans have sought inspiration from nature's exemplary designs. This raises the intriguing possibility of using generative models to simultaneously tackle design tasks across multiple domains, facilitating cross-domain learning and resulting in a series of innovative design solutions. In this paper, we propose LLM2FEA as the first attempt to discover novel designs in generative models by transferring knowledge across multiple domains. By utilizing a multi-factorial evolutionary algorithm (MFEA) to drive a large language model, LLM2FEA integrates knowledge from various fields to generate prompts that guide the generative model in discovering novel and practical objects. Experimental results in the context of 3D aerodynamic design verify the discovery capabilities of the proposed LLM2FEA. The designs generated by LLM2FEA not only satisfy practicality requirements to a certain degree but also feature novel and aesthetically pleasing shapes, demonstrating the potential applications of LLM2FEA in discovery tasks.
- Abstract(参考訳): 生成人工知能の急速な研究と開発により、テキストプロンプトから高品質な画像、テキスト、および3Dモデルの生成が可能になった。
この進歩は、これらのモデルを創造的および工学的アプリケーションの両方にデジタルアーティファクトを作成するために活用できるかどうかを問うものである。
他の領域から革新的なデザインを描くことは、人類が自然の模範的なデザインからインスピレーションを求める「バイオニクス」の歴史的実践とよく似ている。
これにより、生成モデルを使用して複数のドメインにまたがる設計課題に同時に取り組み、ドメイン間の学習を容易にし、一連の革新的な設計ソリューションをもたらすという興味深い可能性が高まっます。
本稿では,複数の領域にまたがる知識を伝達することにより,生成モデルにおける新しい設計を初めて発見する試みとしてLLM2FEAを提案する。
多要素進化アルゴリズム(MFEA)を用いて大きな言語モデルを駆動し、LLM2FEAは様々な分野からの知識を統合し、新規で実用的なオブジェクトを発見する際に生成モデルを導くプロンプトを生成する。
3次元空力設計の文脈における実験結果は、提案したLLM2FEAの発見能力を検証する。
LLM2FEAが生成した設計は、ある程度の実用性要件を満たすだけでなく、新規で美的な形状を特徴とし、LLM2FEAの発見タスクへの応用の可能性を示した。
関連論文リスト
- Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond [48.43910061720815]
マルチモーダル生成AIは、学術と産業の両方で注目を集めている。
理解と生成の両方に統一されたモデルを持つことは可能か?
論文 参考訳(メタデータ) (2024-09-23T13:16:09Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - 3DGEN: A GAN-based approach for generating novel 3D models from image
data [5.767281919406463]
本稿では,物体再構成のためのニューラル・ラジアンス・フィールドとGANに基づく画像生成のためのモデルである3DGENを提案する。
提案アーキテクチャでは、トレーニング画像と同じカテゴリのオブジェクトに対して可塑性メッシュを生成し、その結果のメッシュと最先端のベースラインを比較することができる。
論文 参考訳(メタデータ) (2023-12-13T12:24:34Z) - DreamCreature: Crafting Photorealistic Virtual Creatures from
Imagination [140.1641573781066]
ターゲット概念のラベルなしイメージのセットを前提として、我々は、新しいハイブリッド概念を創出できるT2Iモデルをトレーニングすることを目指している。
そこで我々はDreamCreatureと呼ばれる新しい手法を提案し,その基盤となるサブ概念を同定し抽出する。
したがって、T2Iは忠実な構造とフォトリアリスティックな外観を持つ新しい概念を生成するのに適応する。
論文 参考訳(メタデータ) (2023-11-27T01:24:31Z) - Luminate: Structured Generation and Exploration of Design Space with Large Language Models for Human-AI Co-Creation [19.62178304006683]
現在のインタラクションパラダイムは不足しており、限られたアイデアの集合に対して、ユーザを迅速なコンバージェンスへと導くものだ、と私たちは主張する。
本研究では,ユーザがシームレスに探索し,評価し,多数の応答を合成できる設計空間の構造化を促進するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:53:14Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
本稿では,拡散モデルの基本数学的概念,実装の詳細,および一般的な安定拡散モデルの設計選択を紹介する。
また,拡散に基づく生成と編集に関する文献の急速な発展を概観する。
利用可能なデータセット、メトリクス、オープンな課題、社会的意味について議論する。
論文 参考訳(メタデータ) (2023-10-11T05:32:29Z) - Breathing New Life into 3D Assets with Generative Repainting [74.80184575267106]
拡散ベースのテキスト・ツー・イメージ・モデルは、ビジョン・コミュニティ、アーティスト、コンテンツ・クリエーターから大きな注目を集めた。
近年の研究では、拡散モデルとニューラルネットワークの絡み合いを利用した様々なパイプラインが提案されている。
予備訓練された2次元拡散モデルと標準3次元ニューラルラジアンスフィールドのパワーを独立したスタンドアロンツールとして検討する。
我々のパイプラインはテクスチャ化されたメッシュや無テクスチャのメッシュのような、レガシなレンダリング可能な幾何学を受け入れ、2D生成の洗練と3D整合性強化ツール間の相互作用をオーケストレーションします。
論文 参考訳(メタデータ) (2023-09-15T16:34:51Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
本稿では,これらの異なる視覚言語タスクの協調学習に驚くほど有効であるマルチモーダルタスクのためのデコーダのみのモデルを提案する。
これらの多様な目的の合同学習は単純で効果的であり、これらのタスク間でのモデルの重量共有を最大化することを示した。
我々のモデルは,画像テキストとテキスト画像検索,ビデオ質問応答,オープン語彙検出タスクにおける技術の現状を達成し,より大きく,より広範囲に訓練された基礎モデルよりも優れている。
論文 参考訳(メタデータ) (2023-03-29T16:42:30Z) - Investigating GANsformer: A Replication Study of a State-of-the-Art
Image Generation Model [0.0]
我々は、オリジナルのGANネットワークであるGANformerの新たなバリエーションを再現し、評価する。
リソースと時間制限のため、ネットワークのトレーニング時間、データセットタイプ、サイズを制限しなければなりませんでした。
論文 参考訳(メタデータ) (2023-03-15T12:51:16Z) - Challenges in creative generative models for music: a divergence
maximization perspective [3.655021726150369]
創造的な実践における生成機械学習モデルの開発は、芸術家、実践家、パフォーマーの間でより多くの関心を集めている。
ほとんどのモデルは、トレーニングデータセットで定義されたドメインの外にあるコンテンツを生成することができない。
本稿では,ML目的の新しい汎用的な定式化から始まる,新たな予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-16T12:02:43Z) - CreativeGAN: Editing Generative Adversarial Networks for Creative Design
Synthesis [1.933681537640272]
本論文では,新しいデザインを作成するための自動手法であるCreativeGANを提案する。
デザインをユニークなものにするコンポーネントを識別し、GANモデルを変更することで、識別されたユニークなコンポーネントでデザインを生成する可能性が高まる。
自転車デザインのデータセットを用いて,ユニークなフレームとハンドル,および幅広いデザインの珍しいノベルティを備えた新しい自転車デザインを作成できることを実証した。
論文 参考訳(メタデータ) (2021-03-10T18:22:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。