論文の概要: A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion
- arxiv url: http://arxiv.org/abs/2406.15128v1
- Date: Fri, 21 Jun 2024 13:21:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:32:37.624663
- Title: A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion
- Title(参考訳): Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion (特集:平成11年度日本皮膚科学会学術講演会講演要旨)
- Authors: Ayush Roy, Sujan Sarkar, Sohom Ghosal, Dmitrii Kaplun, Asya Lyanova, Ram Sarkar,
- Abstract要約: 本研究では,新しいアテンション機構を用いて,空間的次元と病変の対称性の相違点を同定する新しいモデルを提案する。
我々は、HAM10000と呼ばれるマルチクラスで高いクラスバランスのデータセットでモデルをテストし、91.17%のF1スコアと90.75%の精度で有望な結果を得た。
- 参考スコア(独自算出の注目度): 22.872949341281657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin cancer is a highly dangerous type of cancer that requires an accurate diagnosis from experienced physicians. To help physicians diagnose skin cancer more efficiently, a computer-aided diagnosis (CAD) system can be very helpful. In this paper, we propose a novel model, which uses a novel attention mechanism to pinpoint the differences in features across the spatial dimensions and symmetry of the lesion, thereby focusing on the dissimilarities of various classes based on symmetry, uniformity in texture and color, etc. Additionally, to take into account the variations in the boundaries of the lesions for different classes, we employ a gradient-based fusion of wavelet and soft attention-aided features to extract boundary information of skin lesions. We have tested our model on the multi-class and highly class-imbalanced dataset, called HAM10000, and achieved promising results, with a 91.17\% F1-score and 90.75\% accuracy. The code is made available at: https://github.com/AyushRoy2001/WAGF-Fusion.
- Abstract(参考訳): 皮膚がんは、経験豊富な医師から正確な診断を必要とする非常に危険な種類のがんである。
医師が皮膚がんをより効率的に診断できるように、コンピュータ支援診断システム(CAD)が有用である。
本稿では,新しいアテンション機構を用いて,病変の空間的次元と対称性の相違を識別し,対称性,テクスチャ,色彩の均一性などに基づく様々なクラスの相違点に着目したモデルを提案する。
また, 皮膚病変の境界情報の抽出には, ウェーブレットとソフトアテンションエイドを併用する。
我々は、HAM10000と呼ばれるマルチクラスで高いクラスバランスのデータセットでモデルをテストし、91.17\%のF1スコアと90.75\%の精度で有望な結果を得た。
コードはhttps://github.com/AyushRoy2001/WAGF-Fusion.comで公開されている。
関連論文リスト
- LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification [41.94295877935867]
本稿では,メッセンジャーRNA,マイクロRNA,DNAメチル化データを統合し,31種類のがんを分類するグラフベースのディープラーニングフレームワークLASSO-MOGATを紹介する。
論文 参考訳(メタデータ) (2024-08-30T16:26:04Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
ディープ畳み込みニューラルネットワーク(CNN)は、データと画像の分類に優れた可能性を示している。
本稿では,CNNを用いた皮膚病変分類問題について検討する。
本研究では, 転写学習の枠組みを適切に設計し, 適用することにより, 病変検出の顕著な分類精度を得ることができることを示す。
論文 参考訳(メタデータ) (2024-04-01T15:06:20Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
論文 参考訳(メタデータ) (2024-01-24T07:45:24Z) - PACS: Prediction and analysis of cancer subtypes from multi-omics data
based on a multi-head attention mechanism model [2.275409158519155]
がんサブタイプの分類を成功させるために, 教師付きマルチヘッドアテンション機構モデル(SMA)を提案する。
SMAモデルのアテンション機構と特徴共有モジュールは、マルチオミクスデータのグローバルおよびローカルの特徴情報をうまく学習することができる。
SMAモデルは、シミュレーションされた単一細胞およびがんマルチオミクスデータセットにおけるがんサブタイプの最も正確なF1マクロスコープ、F1重み付きおよび正確な分類を達成する。
論文 参考訳(メタデータ) (2023-08-21T03:54:21Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGliomaは人工知能に基づく診断スクリーニングシステムである。
ディープグリオーマは、世界保健機関が成人型びまん性グリオーマ分類を定義するために使用する分子変化を予測することができる。
論文 参考訳(メタデータ) (2023-03-23T18:50:18Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
乳がん検出のための生物物理学的特徴に基づく機械学習手法を提案する。
以上より, 乳腺病変のタイプとサイズは, 分類では98.0%, 操作特性曲線では0.98以上であった。
論文 参考訳(メタデータ) (2022-07-13T23:53:09Z) - Multiple EffNet/ResNet Architectures for Melanoma Classification [3.047409448159345]
メラノーマは最も悪性の皮膚腫瘍であり、通常は正常なモルから発生する。
EffNetとResnetに基づくメラノーマ分類モデルを提案する。
当モデルでは, 同一患者の画像だけでなく, 患者レベルの文脈情報も活用し, がんの予測精度の向上を図る。
論文 参考訳(メタデータ) (2022-04-21T14:46:55Z) - New pyramidal hybrid textural and deep features based automatic skin
cancer classification model: Ensemble DarkNet and textural feature extractor [1.4502611532302039]
本研究は, 皮膚癌自動検出の課題を克服することを目的とする。
自動多段階テクスチャおよびディープ特徴ベースモデルを提案する。
選ばれた上位1000の機能は、10倍のクロスバリデーション技術を使って分類される。
論文 参考訳(メタデータ) (2022-03-28T20:53:09Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。