論文の概要: A LLM-Based Ranking Method for the Evaluation of Automatic Counter-Narrative Generation
- arxiv url: http://arxiv.org/abs/2406.15227v1
- Date: Fri, 21 Jun 2024 15:11:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:13:06.995017
- Title: A LLM-Based Ranking Method for the Evaluation of Automatic Counter-Narrative Generation
- Title(参考訳): 自動カウンタ・ナラレーティブ生成評価のためのLLMに基づくランク付け法
- Authors: Irune Zubiaga, Aitor Soroa, Rodrigo Agerri,
- Abstract要約: 本稿では,Large Language Model (LLM) を評価対象として用いたCN(Assesed Counter Narratives)を提案する。
トーナメント方式で生成したCNを相互に比較することにより、人間の嗜好と0.88ドルの相関を達成できるモデルランキングパイプラインを確立する。
セキュリティ上の懸念から回答を得られなかった場合,ZSのチャットアライメントモデルはタスクを実行する上で最善の選択肢である,と結論付けている。
- 参考スコア(独自算出の注目度): 14.064465097974836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of misinformation and harmful narratives in online discourse has underscored the critical need for effective Counter Narrative (CN) generation techniques. However, existing automatic evaluation methods often lack interpretability and fail to capture the nuanced relationship between generated CNs and human perception. Aiming to achieve a higher correlation with human judgments, this paper proposes a novel approach to asses generated CNs that consists on the use of a Large Language Model (LLM) as a evaluator. By comparing generated CNs pairwise in a tournament-style format, we establish a model ranking pipeline that achieves a correlation of $0.88$ with human preference. As an additional contribution, we leverage LLMs as zero-shot (ZS) CN generators and conduct a comparative analysis of chat, instruct, and base models, exploring their respective strengths and limitations. Through meticulous evaluation, including fine-tuning experiments, we elucidate the differences in performance and responsiveness to domain-specific data. We conclude that chat-aligned models in ZS are the best option for carrying out the task, provided they do not refuse to generate an answer due to security concerns.
- Abstract(参考訳): オンライン談話における誤報や有害な物語の拡散は、効果的なカウンタナラティブ(CN)生成技術にとって重要な必要性を浮き彫りにした。
しかし、既存の自動評価手法は解釈可能性に欠けることが多く、生成したCNと人間の知覚とのニュアンスな関係を捉えることができない。
本稿では,人間の判断と高い相関性を実現するために,Large Language Model (LLM) を評価対象として用いたCNのアセスメント手法を提案する。
トーナメント方式で生成したCNを相互に比較することにより、人間の嗜好と0.88ドルの相関を達成できるモデルランキングパイプラインを確立する。
さらに,LLMをゼロショット(ZS)CNジェネレータとして利用し,チャット,インストラクション,ベースモデルの比較分析を行い,それぞれの強みと限界を探索する。
微調整実験を含む精巧な評価により、ドメイン固有のデータに対する性能と応答性の違いを解明する。
セキュリティ上の懸念から回答を得られなかった場合,ZSのチャットアライメントモデルはタスクを実行する上で最善の選択肢である,と結論付けている。
関連論文リスト
- Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Sequencing Matters: A Generate-Retrieve-Generate Model for Building
Conversational Agents [9.191944519634111]
Georgetown InfoSense GroupはTREC iKAT 2023の課題を解決するために活動している。
提案手法は, 各カット数, 総合成功率において, nDCG において高い性能を示した。
我々のソリューションは、初期回答にLarge Language Models (LLMs) を用いること、BM25による回答基盤、ロジスティック回帰による通過品質フィルタリング、LLMによる回答生成である。
論文 参考訳(メタデータ) (2023-11-16T02:37:58Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
大規模言語モデル(LLM)の自己教師型評価のためのフレームワークを提案する。
閉書知識,毒性,長期文脈依存性を測定するための自己指導型評価戦略を実証する。
自己監督評価と人監督評価との間には強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-06-23T17:59:09Z) - G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment [64.01972723692587]
本稿では,大規模言語モデルにチェーン・オブ・シント(CoT)を組み込んだフレームワークであるG-Evalと,NLG出力の品質評価のためのフォームフィリングパラダイムを提案する。
GPT-4 をバックボーンモデルとした G-Eval は,要約タスクにおいて,0.514 と人間とのスピアマン相関を達成し,従来手法の差を大きく上回ることを示す。
論文 参考訳(メタデータ) (2023-03-29T12:46:54Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
本研究で得られたCGDIALOGコーパスに基づくオープンドメイン応答生成モデルのスプリアス相関に関する最初の研究を行った。
因果探索アルゴリズムに着想を得て,反応生成モデルの学習と推論のための新しいモデル非依存手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T06:33:48Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - Evaluating Text Coherence at Sentence and Paragraph Levels [17.99797111176988]
本稿では,既存の文順序付け手法の段落順序付けタスクへの適応について検討する。
また、ミニデータセットとノイズの多いデータセットを人工的に作成することで、既存のモデルの学習性と堅牢性を比較する。
我々は、リカレントグラフニューラルネットワークに基づくモデルがコヒーレンスモデリングの最適選択であると結論付けている。
論文 参考訳(メタデータ) (2020-06-05T03:31:49Z) - Learning to Compare for Better Training and Evaluation of Open Domain
Natural Language Generation Models [23.62054164511058]
そこで本研究では,文のペアを細調整して比較することで,自然言語生成モデルを評価することを提案する。
完全に自己管理された方法でトレーニングできる一方で、人間の好みのアノテーションを少しだけ含んだモデルをさらに微調整することが可能です。
論文 参考訳(メタデータ) (2020-02-12T15:52:21Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。