論文の概要: Open Problem: Order Optimal Regret Bounds for Kernel-Based Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2406.15250v1
- Date: Fri, 21 Jun 2024 15:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:03:22.976083
- Title: Open Problem: Order Optimal Regret Bounds for Kernel-Based Reinforcement Learning
- Title(参考訳): 開問題:カーネルベース強化学習のための順序最適レグレト境界
- Authors: Sattar Vakili,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、様々なアプリケーション領域で大きな成功を収めている。
このオープンな問題を強調し、既存の部分的な結果を概説し、関連する課題について議論する。
- 参考スコア(独自算出の注目度): 10.358743901458615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has shown great empirical success in various application domains. The theoretical aspects of the problem have been extensively studied over past decades, particularly under tabular and linear Markov Decision Process structures. Recently, non-linear function approximation using kernel-based prediction has gained traction. This approach is particularly interesting as it naturally extends the linear structure, and helps explain the behavior of neural-network-based models at their infinite width limit. The analytical results however do not adequately address the performance guarantees for this case. We will highlight this open problem, overview existing partial results, and discuss related challenges.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、様々なアプリケーション領域で大きな成功を収めている。
この問題の理論的側面は、特に表層および線形マルコフ決定過程構造の下で、過去数十年にわたって広く研究されてきた。
近年,カーネルベースの予測を用いた非線形関数近似が注目されている。
このアプローチは、線形構造を自然に拡張し、無限の幅制限でニューラルネットワークベースのモデルの振る舞いを説明するのに役立つため、特に興味深い。
しかし、解析結果は、このケースのパフォーマンス保証に適切に対処しない。
このオープンな問題を強調し、既存の部分的な結果を概説し、関連する課題について議論する。
関連論文リスト
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective [9.753461673117362]
ニューラル・タンジェント・カーネル(NTK)は、大規模ニューラルネットワークの振る舞いを記述する理論的枠組みとして注目されている。
カーネル体制への収束率の定量化の現在の結果は、これらの利点を利用するには、それらよりも桁違いに広いアーキテクチャが必要であることを示唆している。
本研究は,大規模建築物の実用的関連挙動を予測するための限界条件について検討する。
論文 参考訳(メタデータ) (2023-09-29T20:51:24Z) - On the Sublinear Regret of GP-UCB [58.25014663727544]
ガウス過程上信頼境界 (GP-UCB) アルゴリズムは, ほぼ最適の後悔率を有することを示す。
私たちの改善は、基盤となるカーネルの滑らかさに比例してカーネルリッジ推定を正規化するという、重要な技術的貢献に依存しています。
論文 参考訳(メタデータ) (2023-07-14T13:56:11Z) - Fine-grained analysis of non-parametric estimation for pairwise learning [9.676007573960383]
ペアワイズ学習における非パラメトリック推定の一般化性能について検討する。
我々の結果は、ランキング、AUC、ペアワイズ回帰、メートル法、類似性学習など、幅広いペアワイズ学習問題に対処するために利用できる。
論文 参考訳(メタデータ) (2023-05-31T08:13:14Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
強化学習(RL)のための様々なアルゴリズムは、その収束率の劇的な変動を問題構造の関数として示している。
この研究は、観察されたパフォーマンスの違いについて、textitexを説明する保証を提供する。
次の自然なステップは、これらの理論的保証を実際に有用なガイドラインに変換することです。
論文 参考訳(メタデータ) (2022-01-21T04:25:35Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
本研究では,Threshold Learned Iterative Shrinkage Algorithming (NLISTA)を導入することでギャップを埋める。
合成データを用いた実験は理論結果と相関し,その手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T11:31:08Z) - Optimization and Generalization of Regularization-Based Continual
Learning: a Loss Approximation Viewpoint [35.5156045701898]
各タスクの損失関数の2階Taylor近似として定式化することにより、正規化に基づく連続学習の新しい視点を提供する。
この観点から、正規化に基づく連続学習の最適化側面(収束)と一般化特性(有限サンプル保証)を考察する。
論文 参考訳(メタデータ) (2020-06-19T06:08:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。