論文の概要: Fingerprint Membership and Identity Inference Against Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2406.15253v1
- Date: Fri, 21 Jun 2024 15:43:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:03:22.971159
- Title: Fingerprint Membership and Identity Inference Against Generative Adversarial Networks
- Title(参考訳): 生成的敵ネットワークに対するフィンガープリントメンバーシップとアイデンティティ推定
- Authors: Saverio Cavasin, Daniele Mari, Simone Milani, Mauro Conti,
- Abstract要約: 生成的対向ネットワークを用いて生成された指紋データセットに対する同一性推論攻撃を設計・テストする。
実験結果から, 提案法は異なる構成で有効であり, 生体計測に容易に拡張可能であることが示された。
- 参考スコア(独自算出の注目度): 19.292976022250684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models are gaining significant attention as potential catalysts for a novel industrial revolution. Since automated sample generation can be useful to solve privacy and data scarcity issues that usually affect learned biometric models, such technologies became widely spread in this field. In this paper, we assess the vulnerabilities of generative machine learning models concerning identity protection by designing and testing an identity inference attack on fingerprint datasets created by means of a generative adversarial network. Experimental results show that the proposed solution proves to be effective under different configurations and easily extendable to other biometric measurements.
- Abstract(参考訳): 生産モデルは、新しい産業革命の触媒として大きな注目を集めている。
自動サンプル生成は、通常、学習された生体モデルに影響を与えるプライバシーやデータ不足の問題を解決するのに有用であるため、この分野ではそのような技術が広く普及した。
本稿では, 識別保護に関する生成機械学習モデルの脆弱性を, 生成逆ネットワークを用いて生成した指紋データセットに対する識別推測攻撃を設計し, テストすることによって評価する。
実験結果から, 提案法は異なる構成で有効であり, 生体計測に容易に拡張可能であることが示された。
関連論文リスト
- Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
GAN(Generative Adversarial Networks)の統合によるNIDSの性能向上のための新しいアプローチを提案する。
GANは、現実世界のネットワークの振る舞いを忠実に模倣する合成ネットワークトラフィックデータを生成する。
NIDSへのGANの統合は,訓練データに制限のある攻撃に対する侵入検知性能の向上につながる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-11T04:01:15Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
本稿では,持続的かつ積極的なディープフェイクトレーニング強化ソリューションを提案する。
我々は、ディープフェイクジェネレータモデルによって導入されたアーティファクトの効果を模倣するオートエンコーダのプールを採用する。
実験の結果,提案するアンサンブル・オートエンコーダに基づくデータ拡張学習手法が一般化の点で改善されていることがわかった。
論文 参考訳(メタデータ) (2024-03-29T19:09:08Z) - DiffFinger: Advancing Synthetic Fingerprint Generation through Denoising Diffusion Probabilistic Models [0.0]
本研究では,Denoising Diffusion Probabilistic Models (DDPMs) を用いた合成指紋画像の生成について検討する。
以上の結果から,DiffFingerは高品質なトレーニングデータセットと競合するだけでなく,よりリッチなバイオメトリックデータも提供し,真から生への多様性を反映していることがわかった。
論文 参考訳(メタデータ) (2024-03-15T14:34:29Z) - Generative Models are Self-Watermarked: Declaring Model Authentication
through Re-Generation [17.88043926057354]
データオーナシップの検証は、特に生成したデータの不正な再利用の場合、非常に困難な問題を引き起こします。
私たちの研究は、個々のサンプルからでもデータの再利用を検出することに集中しています。
本稿では, 再生成によるデータ所有を考慮に入れた説明可能な検証手法を提案し, さらに, 反復的データ再生による生成モデルにおけるこれらの指紋の増幅を行う。
論文 参考訳(メタデータ) (2024-02-23T10:48:21Z) - AttackNet: Enhancing Biometric Security via Tailored Convolutional Neural Network Architectures for Liveness Detection [20.821562115822182]
アタックネット(AttackNet)は、生体認証システムにおける偽りの脅威に対処するために設計された、難解な畳み込みニューラルネットワークアーキテクチャである。
低レベルの特徴抽出から高レベルのパターン識別へシームレスに移行する、階層化された防御機構を提供する。
多様なデータセットにまたがってモデルをベンチマークすることは、その長所を証明し、現代のモデルと比較して優れたパフォーマンス指標を示す。
論文 参考訳(メタデータ) (2024-02-06T07:22:50Z) - Multimodal Adaptive Fusion of Face and Gait Features using Keyless
attention based Deep Neural Networks for Human Identification [67.64124512185087]
歩行のような軟式生体認証は、人物認識や再識別といった監視作業において顔に広く使われている。
本稿では,キーレス注意深層ニューラルネットワークを活用することで,歩行と顔のバイオメトリック・キューを動的に組み込むための適応型マルチバイオメトリック・フュージョン戦略を提案する。
論文 参考訳(メタデータ) (2023-03-24T05:28:35Z) - FedForgery: Generalized Face Forgery Detection with Residual Federated
Learning [87.746829550726]
既存の顔偽造検出方法は、取得した共有データや集中データを直接利用して訓練を行う。
顔偽造検出のための一般化された残留フェデレーション学習(FedForgery)を提案する。
顔偽造検出データセットを公開して行った実験は、提案したFedForgeryの優れた性能を証明している。
論文 参考訳(メタデータ) (2022-10-18T03:32:18Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。