論文の概要: V-RECS, a Low-Cost LLM4VIS Recommender with Explanations, Captioning and Suggestions
- arxiv url: http://arxiv.org/abs/2406.15259v1
- Date: Fri, 21 Jun 2024 15:50:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:03:22.968565
- Title: V-RECS, a Low-Cost LLM4VIS Recommender with Explanations, Captioning and Suggestions
- Title(参考訳): 低コストLCM4VISレコメンダV-RECSの解説, キャプション, 提案
- Authors: Luca Podo, Marco Angelini, Paola Velardi,
- Abstract要約: 本稿では,説明文(E),キャプション(C),提案文(S)を付加した初のビジュアルレコメンダであるV-RECSについて述べる。
V-RECSの視覚化は、専門家でないユーザによる応答検証とデータ探索の両方を容易にする。
- 参考スコア(独自算出の注目度): 3.3235895997314726
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: NL2VIS (natural language to visualization) is a promising and recent research area that involves interpreting natural language queries and translating them into visualizations that accurately represent the underlying data. As we navigate the era of big data, NL2VIS holds considerable application potential since it greatly facilitates data exploration by non-expert users. Following the increasingly widespread usage of generative AI in NL2VIS applications, in this paper we present V-RECS, the first LLM-based Visual Recommender augmented with explanations(E), captioning(C), and suggestions(S) for further data exploration. V-RECS' visualization narratives facilitate both response verification and data exploration by non-expert users. Furthermore, our proposed solution mitigates computational, controllability, and cost issues associated with using powerful LLMs by leveraging a methodology to effectively fine-tune small models. To generate insightful visualization narratives, we use Chain-of-Thoughts (CoT), a prompt engineering technique to help LLM identify and generate the logical steps to produce a correct answer. Since CoT is reported to perform poorly with small LLMs, we adopted a strategy in which a large LLM (GPT-4), acting as a Teacher, generates CoT-based instructions to fine-tune a small model, Llama-2-7B, which plays the role of a Student. Extensive experiments-based on a framework for the quantitative evaluation of AI-based visualizations and on manual assessment by a group of participants-show that V-RECS achieves performance scores comparable to GPT-4, at a much lower cost. The efficacy of the V-RECS teacher-student paradigm is also demonstrated by the fact that the un-tuned Llama fails to perform the task in the vast majority of test cases. We release V-RECS for the visualization community to assist visualization designers throughout the entire visualization generation process.
- Abstract(参考訳): NL2VIS(自然言語からビジュアライゼーションまで)は、自然言語クエリを解釈し、基礎となるデータを正確に表現する視覚化に変換する、有望で最近の研究分野である。
ビッグデータの時代を旅する中で、NL2VISは、専門家でないユーザによるデータ探索を大いに促進するので、アプリケーションの可能性はかなり高い。
NL2VISアプリケーションにおける生成AIの利用がますます広まる中で,本論文では,説明文(E),キャプション(C),提案文(S)を付加した最初のLCMベースのビジュアルレコメンダであるV-RECSについて述べる。
V-RECSの視覚化は、専門家でないユーザによる応答検証とデータ探索の両方を容易にする。
さらに,提案手法は,小型モデルを効果的に微調整する手法を活用することにより,強力なLCMの使用に伴う計算,制御可能性,コスト問題を緩和する。
洞察に富んだ視覚化の物語を生成するために,我々は,LLMが正しい回答を得るための論理的ステップを識別し生成するのに役立つ,迅速なエンジニアリング技術であるChain-of-Thoughts (CoT) を用いている。
そこで我々は,教師として働く大規模LLM(GPT-4)が,小さなモデルであるLlama-2-7Bを微調整するためのCoTベースの命令を生成する戦略を採用した。
AIに基づく可視化の定量的評価のためのフレームワークと、参加者のグループによる手作業による評価に基づく大規模な実験により、より低コストで、V-RECSがGPT-4に匹敵するパフォーマンススコアを達成できることを示す。
V-RECSの教師-学生パラダイムの有効性は、未調整のLlamaがほとんどのテストケースでそのタスクを実行できないという事実によっても証明されている。
我々はビジュアライゼーションコミュニティ向けにV-RECSをリリースし、ビジュアライゼーション生成プロセス全体を通してビジュアライゼーションデザイナーを支援する。
関連論文リスト
- Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study [41.84915013818794]
The Natural Language to Visualization (NL2Vis) taskは、自然言語記述を接地テーブルの視覚表現に変換することを目的としている。
多くのディープラーニングベースのアプローチがNL2Vis向けに開発されているが、目に見えないデータベースや複数のテーブルにまたがるデータの視覚化には課題が続いている。
本稿では,Large Language Models (LLMs) の顕著な生成能力からインスピレーションを得て,その可能性を評価するための実証的研究を行う。
論文 参考訳(メタデータ) (2024-04-26T03:25:35Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Large Language Models for Data Annotation: A Survey [49.8318827245266]
LLM(Advanced Large Language Models)の出現は、データアノテーションの複雑なプロセスを自動化する前例のない機会を提供する。
この調査には、LLMが注釈付けできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションにLLMを使用する際の主な課題と制限に関する詳細な議論が含まれている。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction [62.409807640887834]
中国語の文法的誤り訂正(CGEC)は、入力文中のすべての文法的誤りを修正することを目的としている。
CGECの修正器としてのLLMの性能は、課題の焦点が難しいため不満足なままである。
CGECタスクにおけるLCMの役割を再考し、CGECでよりよく活用し、探索できるようにした。
論文 参考訳(メタデータ) (2024-02-18T01:40:34Z) - Representation Learning with Large Language Models for Recommendation [34.46344639742642]
本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
論文 参考訳(メタデータ) (2023-10-24T15:51:13Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
ゼロショットと少数ショットのレコメンデーションタスクのために、純粋に大きな言語モデルを適応し、強化することに重点を置いています。
ゼロショット設定と少数ショット設定の両方でレコメンデーションタスクを行うRetrieval-enhanced Large Language Model (ReLLa)を提案する。
論文 参考訳(メタデータ) (2023-08-22T02:25:04Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - Improving Language Models via Plug-and-Play Retrieval Feedback [42.786225163763376]
大規模言語モデル(LLM)は、様々なNLPタスクで顕著なパフォーマンスを示す。
彼らはしばしば誤った情報や幻覚的な情報を生成し、現実のシナリオにおける現実的な適用を妨げます。
ReFeedは,プラグイン・アンド・プレイフレームワークにおける自動検索フィードバックを提供することにより,LLMの強化を目的とした新しいパイプラインである。
論文 参考訳(メタデータ) (2023-05-23T12:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。