論文の概要: NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing
- arxiv url: http://arxiv.org/abs/2406.15294v2
- Date: Thu, 4 Jul 2024 18:51:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 22:35:04.323825
- Title: NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing
- Title(参考訳): 自然言語処理における科学文献探索システムNLP-KG
- Authors: Tim Schopf, Florian Matthes,
- Abstract要約: NLP-KGは、未知の自然言語処理分野の研究文献の探索を支援するために設計された機能豊富なシステムである。
セマンティック検索に加えて、NLP-KGは興味のある分野への簡単な紹介を提供する調査論文を簡単に見つけることができる。
フィールド・オブ・スタディ(Fields of Study)階層グラフにより、ユーザーはフィールドとその関連領域に慣れることができる。
- 参考スコア(独自算出の注目度): 3.3916160303055567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific literature searches are often exploratory, whereby users are not yet familiar with a particular field or concept but are interested in learning more about it. However, existing systems for scientific literature search are typically tailored to keyword-based lookup searches, limiting the possibilities for exploration. We propose NLP-KG, a feature-rich system designed to support the exploration of research literature in unfamiliar natural language processing (NLP) fields. In addition to a semantic search, NLP-KG allows users to easily find survey papers that provide a quick introduction to a field of interest. Further, a Fields of Study hierarchy graph enables users to familiarize themselves with a field and its related areas. Finally, a chat interface allows users to ask questions about unfamiliar concepts or specific articles in NLP and obtain answers grounded in knowledge retrieved from scientific publications. Our system provides users with comprehensive exploration possibilities, supporting them in investigating the relationships between different fields, understanding unfamiliar concepts in NLP, and finding relevant research literature. Demo, video, and code are available at: https://github.com/NLP-Knowledge-Graph/NLP-KG-WebApp.
- Abstract(参考訳): 科学文献の検索はしばしば探索的であり、ユーザーは特定の分野や概念に慣れていないが、それについてもっと学ぶことに興味がある。
しかし、科学文献検索のための既存のシステムは、通常キーワードベースのルックアップ検索に適合し、探索の可能性を制限する。
本研究では,NLP分野の研究文献の探索を支援する機能豊富なシステムであるNLP-KGを提案する。
セマンティック検索に加えて、NLP-KGは興味のある分野への簡単な紹介を提供する調査論文を簡単に見つけることができる。
さらに、フィールド・オブ・スタディ(Fields of Study)階層グラフにより、ユーザーはフィールドとその関連領域に慣れることができる。
最後に、チャットインタフェースにより、NLPにおける馴染みのない概念や特定の記事について質問し、科学的出版物から検索した知識に基づく回答を得ることができる。
本システムは,ユーザに対して,さまざまな分野間の関係の調査,NLPにおける馴染みのない概念の理解,研究文献の検索など,包括的な探索可能性を提供する。
デモ、ビデオ、コードは、https://github.com/NLP-Knowledge-Graph/NLP-KG-WebAppで入手できる。
関連論文リスト
- DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research [96.10765714077208]
従来のキーワードベースの検索エンジンは、特定の用語に慣れていないユーザーを支援するのに不足している。
本稿では, バイオメディカル研究のための知識グラフに基づく紙検索エンジンを提案し, ユーザエクスペリエンスの向上を図る。
DiscoverPathと呼ばれるこのシステムは、名前付きエンティティ認識(NER)とPOSタグを使って、記事の要約から用語や関係を抽出し、KGを作成する。
論文 参考訳(メタデータ) (2023-09-04T20:52:33Z) - GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training
Data Exploration [97.68234051078997]
我々はPyseriniを、オープンソースのAIライブラリとアーティファクトのHugging Faceエコシステムに統合する方法について論じる。
Jupyter NotebookベースのウォークスルーがGitHubで公開されている。
GAIA Search - 前述した原則に従って構築された検索エンジンで、人気の高い4つの大規模テキストコレクションへのアクセスを提供する。
論文 参考訳(メタデータ) (2023-06-02T12:09:59Z) - Beyond Good Intentions: Reporting the Research Landscape of NLP for
Social Good [115.1507728564964]
NLP4SG Papersは3つのタスクを関連づけた科学データセットである。
これらのタスクはNLP4SGの論文を特定し、NLP4SGのランドスケープを特徴付けるのに役立つ。
現状のNLPモデルを用いてこれらのタスクに対処し、ACLアンソロジー全体においてそれらを使用する。
論文 参考訳(メタデータ) (2023-05-09T14:16:25Z) - Survey of NLP in Pharmacology: Methodology, Tasks, Resources, Knowledge,
and Tools [0.0]
本研究の主な目的は、薬理学分野における最近のNLPの使用状況を調べることである。
我々は、最新のNLP方法論、一般的なタスク、関連するテキストデータ、知識ベース、有用なプログラミングライブラリを調査するために、カバー範囲を5つのカテゴリに分けた。
結果として得られた調査は、実践者や関心のある観察者にとって有用な、この地域の概要を包括的に示すものである。
論文 参考訳(メタデータ) (2022-08-22T12:10:27Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
ディープラーニングは自然言語処理(NLP)分野において主要な技術である。
ディープラーニングには多くのラベル付きデータが必要です。
メタ学習は、より良いアルゴリズムを学ぶためのアプローチを研究する機械学習の分野である。
論文 参考訳(メタデータ) (2022-05-03T13:58:38Z) - Neural Approaches to Conversational Information Retrieval [94.77863916314979]
会話情報検索(CIR)システムは、会話インタフェースを備えた情報検索(IR)システムである。
近年のディープラーニングの進歩により、自然言語処理(NLP)と会話型AIが大幅に改善されている。
この本は、ここ数年で開発された神経アプローチに焦点を当てた、CIRの最近の進歩を調査します。
論文 参考訳(メタデータ) (2022-01-13T19:04:59Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
我々は、自然言語処理(NLP)とグラフニューラルネットワーク(GNN)を用いて、記事の意味的・関係的な側面に基づく文書レベルの埋め込みに焦点を当てる。
論文のセマンティックな空間をNLPでエンコードできるのに対し、GNNでは研究コミュニティの社会的実践をエンコードするリレーショナルな空間を構築することができる。
論文 参考訳(メタデータ) (2020-11-05T14:57:41Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。