論文の概要: A Socratic RAG Approach to Connect Natural Language Queries on Research Topics with Knowledge Organization Systems
- arxiv url: http://arxiv.org/abs/2502.15005v1
- Date: Thu, 20 Feb 2025 19:58:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:46.564018
- Title: A Socratic RAG Approach to Connect Natural Language Queries on Research Topics with Knowledge Organization Systems
- Title(参考訳): 研究トピックにおける自然言語クエリと知識体系システムとの結合のためのソクラティックRAGアプローチ
- Authors: Lew Lefton, Kexin Rong, Chinar Dankhara, Lila Ghemri, Firdous Kausar, A. Hannibal Hamdallahi,
- Abstract要約: 本稿では,研究トピックに関する自然言語クエリを機械で解釈可能なセマンティックエンティティにマッピングするRAG(Retrieval Augmented Generation)エージェントを提案する。
我々のアプローチは、RAGとソクラティック対話を組み合わせることで、ユーザの研究トピックに対する直感的な理解と、確立した知識組織システムとを整合させる。
- 参考スコア(独自算出の注目度): 0.3782392304044599
- License:
- Abstract: In this paper, we propose a Retrieval Augmented Generation (RAG) agent that maps natural language queries about research topics to precise, machine-interpretable semantic entities. Our approach combines RAG with Socratic dialogue to align a user's intuitive understanding of research topics with established Knowledge Organization Systems (KOSs). The proposed approach will effectively bridge "little semantics" (domain-specific KOS structures) with "big semantics" (broad bibliometric repositories), making complex academic taxonomies more accessible. Such agents have the potential for broad use. We illustrate with a sample application called CollabNext, which is a person-centric knowledge graph connecting people, organizations, and research topics. We further describe how the application design has an intentional focus on HBCUs and emerging researchers to raise visibility of people historically rendered invisible in the current science system.
- Abstract(参考訳): 本稿では,研究トピックに関する自然言語クエリを,精密で機械解釈可能なセマンティックエンティティにマッピングする検索拡張生成(RAG)エージェントを提案する。
我々のアプローチは、RAGとソクラティック対話を組み合わせることで、ユーザの研究トピックに対する直感的な理解と、確立した知識組織システム(KOS)を整合させる。
提案手法は,「リトル・セマンティクス(ドメイン固有のKOS構造)」と「ビッグ・セマンティクス」を効果的に橋渡しし,複雑な学術分類学をより使いやすくするものである。
このような薬剤は広く使われる可能性がある。
CollabNextは人、組織、研究トピックを結びつける人中心の知識グラフです。
さらに、アプリケーション設計がHBCUと新興研究者に意図的に焦点を合わせ、現在の科学システムで歴史的に見えている人々の視認性を高める方法について述べる。
関連論文リスト
- Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature [48.572336666741194]
本稿では,探索探索能力の向上を目的とした知識ナビゲータを提案する。
検索された文書を、名前と記述の科学トピックとサブトピックの、ナビゲート可能な2段階の階層に整理する。
論文 参考訳(メタデータ) (2024-08-28T14:48:37Z) - pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy [2.6952253149772996]
Pathfinderは天文学における文献のレビューと知識発見を可能にする機械学習フレームワークである。
我々のフレームワークは、LLMベースの合成と高度な検索技術を組み合わせて、意味文脈による天文学文献の検索を行う。
時間に基づく重み付けスキームと引用に基づく重み付けスキームを通じて、jargon、名前付きエンティティ、時間的側面の複雑さに対処する。
論文 参考訳(メタデータ) (2024-08-02T20:05:24Z) - NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing [3.3916160303055567]
NLP-KGは、未知の自然言語処理分野の研究文献の探索を支援するために設計された機能豊富なシステムである。
セマンティック検索に加えて、NLP-KGは興味のある分野への簡単な紹介を提供する調査論文を簡単に見つけることができる。
フィールド・オブ・スタディ(Fields of Study)階層グラフにより、ユーザーはフィールドとその関連領域に慣れることができる。
論文 参考訳(メタデータ) (2024-06-21T16:38:22Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
論文 参考訳(メタデータ) (2024-05-24T09:19:45Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research [96.10765714077208]
従来のキーワードベースの検索エンジンは、特定の用語に慣れていないユーザーを支援するのに不足している。
本稿では, バイオメディカル研究のための知識グラフに基づく紙検索エンジンを提案し, ユーザエクスペリエンスの向上を図る。
DiscoverPathと呼ばれるこのシステムは、名前付きエンティティ認識(NER)とPOSタグを使って、記事の要約から用語や関係を抽出し、KGを作成する。
論文 参考訳(メタデータ) (2023-09-04T20:52:33Z) - Semantic Similarity Measure of Natural Language Text through Machine
Learning and a Keyword-Aware Cross-Encoder-Ranking Summarizer -- A Case Study
Using UCGIS GIS&T Body of Knowledge [2.4909170697740968]
GIS&T Body of Knowledge (BoK)は、地理空間的トピックを定義し、開発し、文書化するためのコミュニティ主導の取り組みである。
本研究は,テキストから意味を抽出する上で,複数自然言語処理(NLP)技術の有効性を評価する。
また、科学出版物を分析するための機械学習技術の使用について、新たな視点を提供する。
論文 参考訳(メタデータ) (2023-05-17T01:17:57Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。