論文の概要: pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy
- arxiv url: http://arxiv.org/abs/2408.01556v1
- Date: Fri, 02 Aug 2024 20:05:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 18:50:01.446452
- Title: pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy
- Title(参考訳): pathfinder:天文学における文献レビューと知識発見のためのセマンティックフレームワーク
- Authors: Kartheik G. Iyer, Mikaeel Yunus, Charles O'Neill, Christine Ye, Alina Hyk, Kiera McCormick, Ioana Ciuca, John F. Wu, Alberto Accomazzi, Simone Astarita, Rishabh Chakrabarty, Jesse Cranney, Anjalie Field, Tirthankar Ghosal, Michele Ginolfi, Marc Huertas-Company, Maja Jablonska, Sandor Kruk, Huiling Liu, Gabriel Marchidan, Rohit Mistry, J. P. Naiman, J. E. G. Peek, Mugdha Polimera, Sergio J. Rodriguez, Kevin Schawinski, Sanjib Sharma, Michael J. Smith, Yuan-Sen Ting, Mike Walmsley,
- Abstract要約: Pathfinderは天文学における文献のレビューと知識発見を可能にする機械学習フレームワークである。
我々のフレームワークは、LLMベースの合成と高度な検索技術を組み合わせて、意味文脈による天文学文献の検索を行う。
時間に基づく重み付けスキームと引用に基づく重み付けスキームを通じて、jargon、名前付きエンティティ、時間的側面の複雑さに対処する。
- 参考スコア(独自算出の注目度): 2.6952253149772996
- License:
- Abstract: The exponential growth of astronomical literature poses significant challenges for researchers navigating and synthesizing general insights or even domain-specific knowledge. We present Pathfinder, a machine learning framework designed to enable literature review and knowledge discovery in astronomy, focusing on semantic searching with natural language instead of syntactic searches with keywords. Utilizing state-of-the-art large language models (LLMs) and a corpus of 350,000 peer-reviewed papers from the Astrophysics Data System (ADS), Pathfinder offers an innovative approach to scientific inquiry and literature exploration. Our framework couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic context as a complement to currently existing methods that use keywords or citation graphs. It addresses complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting schemes. We demonstrate the tool's versatility through case studies, showcasing its application in various research scenarios. The system's performance is evaluated using custom benchmarks, including single-paper and multi-paper tasks. Beyond literature review, Pathfinder offers unique capabilities for reformatting answers in ways that are accessible to various audiences (e.g. in a different language or as simplified text), visualizing research landscapes, and tracking the impact of observatories and methodologies. This tool represents a significant advancement in applying AI to astronomical research, aiding researchers at all career stages in navigating modern astronomy literature.
- Abstract(参考訳): 天文学文学の指数的な成長は、一般的な洞察やドメイン固有の知識をナビゲートし、合成する研究者にとって大きな課題となっている。
Pathfinderは、天文学における文献のレビューと知識発見を可能にする機械学習フレームワークであり、キーワードによる構文検索ではなく、自然言語による意味探索に焦点を当てている。
最先端の大規模言語モデル(LLM)と、ADS(Astrophysics Data System)による35万件の査読論文のコーパスを活用して、Pathfinderは科学的調査と文献調査に革新的なアプローチを提供する。
我々のフレームワークは、キーワードや引用グラフを用いた既存の手法を補完するものとして、LLMに基づく高度な検索手法を結合し、意味文脈を用いて天文学文献を検索する。
時間に基づく重み付けスキームと引用に基づく重み付けスキームを通じて、jargon、名前付きエンティティ、時間的側面の複雑さに対処する。
ケーススタディを通じてツールの汎用性を実証し、様々な研究シナリオでその応用例を示す。
システムの性能は、シングルペーパータスクやマルチペーパータスクを含むカスタムベンチマークを用いて評価される。
文献レビュー以外にも、Pathfinderは様々なオーディエンス(例えば、異なる言語や単純化されたテキスト)にアクセスできる方法で回答を再構築し、研究の風景を視覚化し、観測所や方法論の影響を追跡できるユニークな機能を提供する。
このツールは、天文学の研究にAIを適用し、現代の天文学の文献をナビゲートするあらゆる段階の研究者を支援している。
関連論文リスト
- Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature [48.572336666741194]
本稿では,探索探索能力の向上を目的とした知識ナビゲータを提案する。
検索された文書を、名前と記述の科学トピックとサブトピックの、ナビゲート可能な2段階の階層に整理する。
論文 参考訳(メタデータ) (2024-08-28T14:48:37Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing [3.3916160303055567]
NLP-KGは、未知の自然言語処理分野の研究文献の探索を支援するために設計された機能豊富なシステムである。
セマンティック検索に加えて、NLP-KGは興味のある分野への簡単な紹介を提供する調査論文を簡単に見つけることができる。
フィールド・オブ・スタディ(Fields of Study)階層グラフにより、ユーザーはフィールドとその関連領域に慣れることができる。
論文 参考訳(メタデータ) (2024-06-21T16:38:22Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Bridging Research and Readers: A Multi-Modal Automated Academic Papers
Interpretation System [47.13932723910289]
本稿では,3段階のプロセス段階を有するオープンソースマルチモーダル自動学術論文解釈システム(MMAPIS)を紹介する。
ドキュメントからプレーンテキストや表や図を別々に抽出するために、ハイブリッドなモダリティ前処理とアライメントモジュールを使用している。
すると、この情報は彼らが属するセクション名に基づいて調整され、同じセクション名を持つデータが同じセクションの下に分類される。
抽出されたセクション名を用いて、記事を短いテキストセグメントに分割し、LSMを通してセクション内とセクション間の特定の要約を容易にする。
論文 参考訳(メタデータ) (2024-01-17T11:50:53Z) - Assessing Exoplanet Habitability through Data-driven Approaches: A
Comprehensive Literature Review [0.0]
レビューは、太陽系外惑星研究における新たなトレンドと進歩を照らすことを目的としている。
太陽系外惑星の検出、分類、可視化の相互作用に焦点を当てる。
太陽系外惑星研究で使用される機械学習アプローチの幅広いスペクトルを記述する。
論文 参考訳(メタデータ) (2023-05-18T17:18:15Z) - Mapping Research Trajectories [0.0]
本稿では, あらゆる科学分野に適用可能な, 研究軌道のエンハンマッピングに関する原則的アプローチを提案する。
われわれの視覚化は、時間とともに実体の研究トピックを、直接的に相互に表現している。
実践的な実証アプリケーションでは、機械学習による出版コーパスに対する提案されたアプローチを例示する。
論文 参考訳(メタデータ) (2022-04-25T13:32:39Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
我々は、自然言語処理(NLP)とグラフニューラルネットワーク(GNN)を用いて、記事の意味的・関係的な側面に基づく文書レベルの埋め込みに焦点を当てる。
論文のセマンティックな空間をNLPでエンコードできるのに対し、GNNでは研究コミュニティの社会的実践をエンコードするリレーショナルな空間を構築することができる。
論文 参考訳(メタデータ) (2020-11-05T14:57:41Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。