Exploring LLM Multi-Agents for ICD Coding
- URL: http://arxiv.org/abs/2406.15363v2
- Date: Wed, 14 Aug 2024 15:32:25 GMT
- Title: Exploring LLM Multi-Agents for ICD Coding
- Authors: Rumeng Li, Xun Wang, Hong Yu,
- Abstract summary: The proposed multi-agent method for ICD coding effectively mimics the real-world coding process and improves performance on both common and rare codes.
Our method achieves comparable results to state-of-the-art ICD coding methods that require extensive pre-training or fine-tuning, and outperforms them in rare code accuracy, and explainability.
- Score: 15.730751450511333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address the limitations of Large Language Models (LLMs) in the International Classification of Diseases (ICD) coding task, where they often produce inaccurate and incomplete prediction results due to the high-dimensional and skewed distribution of the ICD codes, and often lack interpretability and reliability as well. We introduce an innovative multi-agent approach for ICD coding which mimics the ICD coding assignment procedure in real-world settings, comprising five distinct agents: the patient, physician, coder, reviewer, and adjuster. Each agent utilizes an LLM-based model tailored to their specific role within the coding process. We also integrate the system with Electronic Health Record (HER)'s SOAP (subjective, objective, assessment and plan) structure to boost the performances. We compare our method with a system of agents designed solely by LLMs and other strong baselines and evaluate it using the Medical Information Mart for Intensive Care III (MIMIC-III) dataset. Our multi-agent coding framework significantly outperforms Zero-shot Chain of Thought (CoT) prompting and self-consistency with CoT (CoT-SC) in coding common and rare ICD codes. An ablation study validates the effectiveness of the designated agent roles. it also outperforms the LLM-designed agent system. Moreover, our method achieves comparable results to state-of-the-art ICD coding methods that require extensive pre-training or fine-tuning, and outperforms them in rare code accuracy, and explainability. Additionally, we demonstrate the method's practical applicability by presenting its performance in scenarios not limited by the common or rare ICD code constraints.The proposed multi-agent method for ICD coding effectively mimics the real-world coding process and improves performance on both common and rare codes.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
We propose a novel approach for ICD indexing that adopts three ideas.
We use a multi-level deep dilated residual convolution encoder to aggregate the information from the clinical notes.
We formalize the task of ICD classification with auxiliary knowledge of the medical records.
arXiv Detail & Related papers (2024-05-29T13:44:07Z) - RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
We introduce a two-level hierarchical framework, RL-GPT, comprising a slow agent and a fast agent.
The slow agent analyzes actions suitable for coding, while the fast agent executes coding tasks.
This decomposition effectively focuses each agent on specific tasks, proving highly efficient within our pipeline.
arXiv Detail & Related papers (2024-02-29T16:07:22Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers.
This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of large language models.
Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization.
arXiv Detail & Related papers (2024-02-10T11:14:53Z) - Accurate and Well-Calibrated ICD Code Assignment Through Attention Over
Diverse Label Embeddings [1.201425717264024]
Manual assigning ICD codes to clinical text is time-consuming, error-prone, and expensive.
This paper describes a novel approach for automated ICD coding, combining several ideas from previous related work.
Experiments with different splits of the MIMIC-III dataset show that the proposed approach outperforms the current state-of-the-art models in ICD coding.
arXiv Detail & Related papers (2024-02-05T16:40:23Z) - Automated clinical coding using off-the-shelf large language models [10.365958121087305]
The task of assigning diagnostic ICD codes to patient hospital admissions is typically performed by expert human coders.
Efforts towards automated ICD coding are dominated by supervised deep learning models.
In this work, we leverage off-the-shelf pre-trained generative large language models to develop a practical solution.
arXiv Detail & Related papers (2023-10-10T11:56:48Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
Contextual word embedding models have achieved state-of-the-art results in multiple NLP tasks.
ICDBigBird is a BigBird-based model which can integrate a Graph Convolutional Network (GCN)
Our experiments on a real-world clinical dataset demonstrate the effectiveness of our BigBird-based model on the ICD classification task.
arXiv Detail & Related papers (2022-04-21T20:59:56Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
International Classification of Disease (ICD) coding procedure has been shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors.
In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document.
arXiv Detail & Related papers (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.