論文の概要: ExU: AI Models for Examining Multilingual Disinformation Narratives and Understanding their Spread
- arxiv url: http://arxiv.org/abs/2406.15443v1
- Date: Thu, 30 May 2024 11:13:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 07:01:19.495391
- Title: ExU: AI Models for Examining Multilingual Disinformation Narratives and Understanding their Spread
- Title(参考訳): ExU:多言語情報ナラティブを抽出し,その拡散を理解するAIモデル
- Authors: Jake Vasilakes, Zhixue Zhao, Ivan Vykopal, Michal Gregor, Martin Hyben, Carolina Scarton,
- Abstract要約: ExUプロジェクトは、多言語情報分析のためのAIベースのモデルの開発に焦点を当てている。
本稿では,ExUプロジェクトの提案を概説し,ファクトチェックを支援するツールの設計に関するユーザ要件調査の結果を要約する。
- 参考スコア(独自算出の注目度): 7.706781395583231
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Addressing online disinformation requires analysing narratives across languages to help fact-checkers and journalists sift through large amounts of data. The ExU project focuses on developing AI-based models for multilingual disinformation analysis, addressing the tasks of rumour stance classification and claim retrieval. We describe the ExU project proposal and summarise the results of a user requirements survey regarding the design of tools to support fact-checking.
- Abstract(参考訳): オンラインの偽情報に対処するには、ファクトチェックやジャーナリストが大量のデータを盗むのを助けるために、言語全体での物語を分析する必要がある。
ExUプロジェクトは、マルチリンガルな偽情報分析のためのAIベースのモデルの開発に重点を置いており、噂の姿勢分類とクレーム検索のタスクに対処している。
本稿では,ExUプロジェクトの提案を概説し,ファクトチェックを支援するツールの設計に関するユーザ要件調査の結果を要約する。
関連論文リスト
- Exploring the Potential Role of Generative AI in the TRAPD Procedure for Survey Translation [0.0]
本稿では、生成型AIが調査機器の翻訳にどう役立つかを探索し、評価する。
我々は、ChatGPTを用いたゼロショットプロンプト実験を実施し、生成的AIの言語的聴衆への翻訳が困難である可能性のある質問の特徴を識別する能力を探究する。
論文 参考訳(メタデータ) (2024-11-18T20:53:58Z) - A Multilingual Sentiment Lexicon for Low-Resource Language Translation using Large Languages Models and Explainable AI [0.0]
南アフリカとDRCは、ズールー語、セペディ語、アフリカーンス語、フランス語、英語、ツィルバ語などの言語と共に複雑な言語景観を呈している。
この研究はフランス語とツィルバ語用に設計された多言語辞書を開発し、英語、アフリカーンス語、セペディ語、ズールー語への翻訳を含むように拡張された。
総合的なテストコーパスは、感情を予測するためにトレーニングされた機械学習モデルを使用して、翻訳と感情分析タスクをサポートするために作成される。
論文 参考訳(メタデータ) (2024-11-06T23:41:18Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - YAYI-UIE: A Chat-Enhanced Instruction Tuning Framework for Universal Information Extraction [20.32778991187863]
ユニバーサル情報抽出(YAYI-UIE)のためのエンドツーエンドのチャット強化指導フレームワークを提案する。
具体的には,対話データと情報抽出データを用いて,情報抽出性能を協調的に向上する。
論文 参考訳(メタデータ) (2023-12-24T21:33:03Z) - Instruct and Extract: Instruction Tuning for On-Demand Information
Extraction [86.29491354355356]
On-Demand Information extractは、現実世界のユーザのパーソナライズされた要求を満たすことを目的としている。
InstructIEというベンチマークを、自動生成したトレーニングデータと、人手による注釈付きテストセットの両方を含む形で提示する。
InstructIE 上に構築した On-Demand Information Extractor, ODIE をさらに発展させる。
論文 参考訳(メタデータ) (2023-10-24T17:54:25Z) - Fine-tuning and aligning question answering models for complex
information extraction tasks [0.8392546351624164]
質問応答(QA)や通過検索モデルのような抽出言語モデルは、クエリ結果が適切なコンテキスト文書の境界内で見つかることを保証します。
既存のドイツ語のQAモデルを微調整することで,複雑な言語的特徴の抽出タスクをカスタマイズする性能が向上することを示す。
評価基準を再現するために,Levenshtein 距離,F1-Score,Exact Match,ROUGE-L の組合せを推定した。
論文 参考訳(メタデータ) (2023-09-26T10:02:21Z) - Diffusion Language Models Can Perform Many Tasks with Scaling and
Instruction-Finetuning [56.03057119008865]
拡散言語モデルを拡張することで、強力な言語学習者が効果的に学習できることが示される。
大規模データから知識を最初に取得することで,大規模に有能な拡散言語モデルを構築する。
実験により、拡散言語モデルのスケーリングは、下流言語タスクにおけるパフォーマンスを一貫して改善することが示された。
論文 参考訳(メタデータ) (2023-08-23T16:01:12Z) - XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
データ不足は、多言語NLPシステムの開発において重要な問題である。
我々はXTREME-UPを提案する。XTREME-UPはゼロショットではなく、希少なデータシナリオに焦点を当てたベンチマークである。
XTREME-UPは、88言語にまたがる言語モデルが、9つのキーとなるユーザー中心技術上で機能する能力を評価する。
論文 参考訳(メタデータ) (2023-05-19T18:00:03Z) - Probing via Prompting [71.7904179689271]
本稿では,探索をプロンプトタスクとして定式化することで,新しいモデルフリーな探索手法を提案する。
我々は5つの探索課題について実験を行い、我々のアプローチが診断プローブよりも情報抽出に優れていることを示す。
次に,その特性に不可欠な頭部を除去し,言語モデリングにおけるモデルの性能を評価することにより,事前学習のための特定の言語特性の有用性を検討する。
論文 参考訳(メタデータ) (2022-07-04T22:14:40Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。