論文の概要: Robust Reinforcement Learning from Corrupted Human Feedback
- arxiv url: http://arxiv.org/abs/2406.15568v1
- Date: Fri, 21 Jun 2024 18:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:34:03.402141
- Title: Robust Reinforcement Learning from Corrupted Human Feedback
- Title(参考訳): 破損した人間のフィードバックからのロバスト強化学習
- Authors: Alexander Bukharin, Ilgee Hong, Haoming Jiang, Qingru Zhang, Zixuan Zhang, Tuo Zhao,
- Abstract要約: 人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の嗜好データを調整するための原則化されたフレームワークを提供する。
我々はRLHFのロバストなアプローチ-$R3M$を提案し、これは、潜在的に破損した選好ラベルをスパースアウトリーとしてモデル化する。
大規模言語モデル(LLM)を用いたロボット制御と自然言語生成の実験により、R3M$は、好みデータに対する様々な摂動に対する報酬の堅牢性を向上することを示した。
- 参考スコア(独自算出の注目度): 88.53728794440272
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning from human feedback (RLHF) provides a principled framework for aligning AI systems with human preference data. For various reasons, e.g., personal bias, context ambiguity, lack of training, etc, human annotators may give incorrect or inconsistent preference labels. To tackle this challenge, we propose a robust RLHF approach -- $R^3M$, which models the potentially corrupted preference label as sparse outliers. Accordingly, we formulate the robust reward learning as an $\ell_1$-regularized maximum likelihood estimation problem. Computationally, we develop an efficient alternating optimization algorithm, which only incurs negligible computational overhead compared with the standard RLHF approach. Theoretically, we prove that under proper regularity conditions, $R^3M$ can consistently learn the underlying reward and identify outliers, provided that the number of outlier labels scales sublinearly with the preference sample size. Furthermore, we remark that $R^3M$ is versatile and can be extended to various preference optimization methods, including direct preference optimization (DPO). Our experiments on robotic control and natural language generation with large language models (LLMs) show that $R^3M$ improves robustness of the reward against several types of perturbations to the preference data.
- Abstract(参考訳): 人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の嗜好データを調整するための原則化されたフレームワークを提供する。
例えば、個人の偏見、文脈のあいまいさ、トレーニングの欠如など、さまざまな理由から、人間のアノテーションは誤った、あるいは一貫性のない選好ラベルを与えることがある。
この課題に対処するために、ロバストなRLHFアプローチ-$R^3M$を提案する。
したがって、ロバスト報酬学習を$\ell_1$-regularized maximum max estimation problemとして定式化する。
計算学的には,従来のRLHF手法に比べて計算オーバーヘッドが無視できるような,効率的な交互最適化アルゴリズムを開発した。
理論的には、適切な正則性条件下では、$R^3M$ が必ず基礎となる報酬を学習し、アウトリーチを識別できることが証明される。
さらに、$R^3M$は汎用的であり、直接選好最適化(DPO)を含む様々な選好最適化手法に拡張できる。
大規模言語モデル(LLMs)を用いたロボット制御と自然言語生成の実験により、R^3M$は好みデータに対する様々な摂動に対する報酬の堅牢性を向上させることが示された。
関連論文リスト
- Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis [16.288866201806382]
モデルフリーなRLHFベストポリシー識別アルゴリズムである$mathsfBSAD$を、明示的な報酬モデル推論なしで開発する。
アルゴリズムは、人選好情報から直接、その最適方針を後方方向に識別する。
論文 参考訳(メタデータ) (2024-06-11T17:01:41Z) - Fine-Tuning Language Models with Reward Learning on Policy [68.70065254564642]
人間からのフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせる効果的なアプローチとして現れている。
その人気にもかかわらず、(固定された)報酬モデルが不正確な流通に悩まされることがある。
本稿では、政策サンプルを用いて報酬モデルを洗練し、流通を継続する、教師なしのフレームワークであるポリシーに関する報酬学習(RLP)を提案する。
論文 参考訳(メタデータ) (2024-03-28T10:02:10Z) - Active Preference Optimization for Sample Efficient RLHF [27.772423917657626]
RLHF(Reinforcement Learning from Human Feedback)は、大規模言語モデルと人間の嗜好の整合において重要である。
現在の方法は、プロンプトジェネレーションのデータセットからプロンプトジェネレーションペアを均一に選択することに依存している。
我々は、好みデータをクエリすることでモデルアライメントを向上させるアクティブな学習アルゴリズムである$textttAPO$を開発した。
論文 参考訳(メタデータ) (2024-02-16T08:19:34Z) - Towards Robust Model-Based Reinforcement Learning Against Adversarial Corruption [60.958746600254884]
本研究は、モデルベース強化学習(RL)における敵対的腐敗の課題に取り組む。
本稿では,MLE に対する不確実性重みとして全変量 (TV) に基づく情報比を利用する,汚損楽観的 MLE (CR-OMLE) アルゴリズムを提案する。
我々は、重み付け手法をオフライン設定にまで拡張し、汚損性悲観的MLE (CR-PMLE) というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T07:27:30Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) は、言語モデルと人間の嗜好を一致させる。
予測最大化アルゴリズムを用いて嗜好分布の混合を学習し、人間の嗜好をよりよく表現する。
従来のRLHFアルゴリズムよりも16%以上の勝利率向上を実現している。
論文 参考訳(メタデータ) (2024-02-14T03:56:27Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - Is RLHF More Difficult than Standard RL? [31.972393805014903]
ヒューマンフィードバック(RLHF)からの強化学習は優先信号から学習し、標準強化学習(RL)は報酬信号から直接学習する。
理論的には、幅広い選好モデルに対して、我々は、報酬に基づくRLのアルゴリズムと技法を直接的に解き、少ないか、余分なコストで解決できることを証明している。
論文 参考訳(メタデータ) (2023-06-25T03:18:15Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
本研究は,RL(Human-in-the-loop reinforcement learning)を軌道的嗜好で検討する。
各ステップで数値的な報酬を受ける代わりに、エージェントは人間の監督者から軌道上のペアよりも優先される。
一般関数近似を用いたPbRLの楽観的モデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-23T09:03:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。