Adaptive Self-Supervised Consistency-Guided Diffusion Model for Accelerated MRI Reconstruction
- URL: http://arxiv.org/abs/2406.15656v1
- Date: Fri, 21 Jun 2024 21:22:17 GMT
- Title: Adaptive Self-Supervised Consistency-Guided Diffusion Model for Accelerated MRI Reconstruction
- Authors: Mojtaba Safari, Zach Eidex, Shaoyan Pan, Richard L. J. Qiu, Xiaofeng Yang,
- Abstract summary: We propose a self-Supervised deep learning compressed Diffusion sensing MRI (DL)" method.
We used 1,376 and singlecoil brain axial post T1 dataset (T1-w) 50 patients.
It was compared with ReconFormer Transformer and SS-MRI, assessing performance using normalized mean error (NMSE), peak signal-to-noise ratio (PSNR), and similarity index (SSIM)
- Score: 1.167578793004766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: To propose a self-supervised deep learning-based compressed sensing MRI (DL-based CS-MRI) method named "Adaptive Self-Supervised Consistency Guided Diffusion Model (ASSCGD)" to accelerate data acquisition without requiring fully sampled datasets. Materials and Methods: We used the fastMRI multi-coil brain axial T2-weighted (T2-w) dataset from 1,376 cases and single-coil brain quantitative magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE) T1 maps from 318 cases to train and test our model. Robustness against domain shift was evaluated using two out-of-distribution (OOD) datasets: multi-coil brain axial postcontrast T1 -weighted (T1c) dataset from 50 cases and axial T1-weighted (T1-w) dataset from 50 patients. Data were retrospectively subsampled at acceleration rates R in {2x, 4x, 8x}. ASSCGD partitions a random sampling pattern into two disjoint sets, ensuring data consistency during training. We compared our method with ReconFormer Transformer and SS-MRI, assessing performance using normalized mean squared error (NMSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). Statistical tests included one-way analysis of variance (ANOVA) and multi-comparison Tukey's Honesty Significant Difference (HSD) tests. Results: ASSCGD preserved fine structures and brain abnormalities visually better than comparative methods at R = 8x for both multi-coil and single-coil datasets. It achieved the lowest NMSE at R in {4x, 8x}, and the highest PSNR and SSIM values at all acceleration rates for the multi-coil dataset. Similar trends were observed for the single-coil dataset, though SSIM values were comparable to ReconFormer at R in {2x, 8x}. These results were further confirmed by the voxel-wise correlation scatter plots. OOD results showed significant (p << 10^-5 ) improvements in undersampled image quality after reconstruction.
Related papers
- Deep Learning Based Apparent Diffusion Coefficient Map Generation from Multi-parametric MR Images for Patients with Diffuse Gliomas [1.5267759610392577]
Apparent diffusion coefficient (ADC) maps derived from diffusion weighted (DWI) MRI provide functional measurements about the water molecules in tissues.
This study aims to develop a deep learning framework to synthesize ADC maps from multi-parametric MR images.
arXiv Detail & Related papers (2024-07-02T19:08:40Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Robust Fiber ODF Estimation Using Deep Constrained Spherical
Deconvolution for Diffusion MRI [7.9283612449524155]
A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF)
measurement variabilities (e.g., inter- and intra-site variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI.
Most existing model-based methods (e.g., constrained spherical deconvolution (CSD)) and learning based methods (e.g., deep learning (DL)) do not explicitly consider such variabilities in fODF modeling.
We propose a novel data-driven deep constrained spherical deconvolution method to
arXiv Detail & Related papers (2023-06-05T14:06:40Z) - Generalizable synthetic MRI with physics-informed convolutional networks [57.628770497971246]
We develop a physics-informed deep learning-based method to synthesize multiple brain magnetic resonance imaging (MRI) contrasts from a single five-minute acquisition.
We investigate its ability to generalize to arbitrary contrasts to accelerate neuroimaging protocols.
arXiv Detail & Related papers (2023-05-21T21:16:20Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Sinogram upsampling using Primal-Dual UNet for undersampled CT and
radial MRI reconstruction [0.4199844472131921]
The Primal-Dual network is a deep learning based method for reconstructing sparsely-sampled CT data.
This paper introduces Primal-Dual UNet, which improves the Primal-Dual network in terms of accuracy and reconstruction speed.
arXiv Detail & Related papers (2021-12-26T19:31:34Z) - Assessment of Data Consistency through Cascades of Independently
Recurrent Inference Machines for fast and robust accelerated MRI
reconstruction [0.0]
Data Consistency (DC) is crucial for generalization in multi-modal data and robustness in detecting pathology.
This work proposes the Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization.
We show that the CIRIM performs best when implicitly enforcing DC, while the E2EVN requires explicitly formulated DC.
arXiv Detail & Related papers (2021-11-30T15:34:30Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
We present the first successful application of the CSGM framework on clinical MRI data.
We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
arXiv Detail & Related papers (2021-08-03T08:52:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z) - Deep Learning Estimation of Multi-Tissue Constrained Spherical
Deconvolution with Limited Single Shell DW-MRI [2.903217519429591]
Deep learning can be used to estimate the information content captured by 8th order constrained spherical deconvolution (CSD)
We examine two network architectures: Sequential network of fully connected dense layers with a residual block in the middle (ResDNN), and Patch based convolutional neural network with a residual block (ResCNN)
The fiber orientation distribution function (fODF) can be recovered with high correlation as compared to the ground truth of MT-CST, which was derived from the multi-shell DW-MRI acquisitions.
arXiv Detail & Related papers (2020-02-20T15:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.